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Abstract

In the past 15 years it has become possible to determine the fractal dimension (Df) of complex objects, including neurons, by
automated image analysis methods. However, there are many unresolved issues that need to be addressed. In this paper we discuss
how the Df calculated by different methods may vary and how fractal analysis may be of use for retinal ganglion cell
characterization. The goal of this work was to acknowledge inherent sources of variation during measurement and evaluate
current fractal analysis methods for describing structure. Our results show that different algorithms and even the same algorithm
performed by different computer programs and/or experimenters may give different but consistent numerical values. All described
methods demonstrated their suitability for classifying cat retinal ganglion cells into distinct groups. Our results reinforce the idea
that comparison of measurements of different profiles using the same measurement method may be useful and valid even if an
exact numeric value of the dimension is not realised in practice. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Fractal dimension; Analysis methods; Cat; Retinal ganglion cells

1. Introduction

Since Mandelbrot (1983) established fractal geometry
to describe the complexity of forms found in nature,
many analytical methods for determining the fractal
dimension (Df) of natural objects have been published.
All methods rely on the relationship between a measur-
ing device and the spatial distribution of the data as
points in space. Since not all methods give identical
results for the same representation of an object, it has
become important to establish guidelines for selecting a
particular method and how these methods compare in
order to standardise computation of Df.

This paper presents an analysis of different methods
used to calculate Df of cat retinal ganglion cells. Each

method presents some difficulties in its application and
interpretation such that the various ‘dimensions’ that
are measured by using the different methods are only
equivalent for ideal (theoretical) fractal forms (Russ,
1994). To study how these different methods compare,
we have analysed a set of 192 neuron images.

2. Fractal geometry and naturally-occurring fractals

Fig. 1 shows an example of an ideal/theoretical frac-
tal object, the Koch curve, with a calculated Df of 1.26.
The form of this object is complex since any change in
magnification/scale will not alter the observed detail.
This similarity observed between magnification/itera-
tion levels is a feature of a geometrical object without a
characteristic length and is termed self-similarity (Peit-
gen et al., 1992).

* Corresponding author. Tel.: +61 2 60516946; fax: +61 2
60516898.

0165-0270/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PII S0165-0270(98)00021-1



H.F. Jelinek, E. Fernandez / Journal of Neuroscience Methods 81 (1998) 9–1810

3. The fractal dimensions

The Euclidean dimension describes objects in space
as integers. Thus a straight line has a dimension of one
(DE=1), a plane a dimension of two (DE=2) and a
volume a dimension of three (DE=3). Df, as a dimen-
sion, is simply a number that reflects a particular aspect
of a geometric form. The dimension value is called
fractal because it is a fraction and not a whole number.
It is called dimension because it provides a measure of
how completely an object fills space. Since cat retinal
ganglion cells seen in two-dimensions are not straight
lines and they do not completely cover the two-dimen-
sional area, they cannot be adequately characterised by
Euclidean geometry.

Obtaining a Df value for biological images by using
the fractal analysis methods discussed below does not
necessarily imply that the image or the representation
of the image is fractal (Murray, 1995; Panico and
Sterling, 1995). Natural objects are scale-invariant
rather than self-similar within an upper and lower limit

due to slight differences in detail between iteration
levels (Peitgen and Richter, 1986). As the limited reso-
lution of the screen does not allow a complete represen-
tation of any fractal object, a prefractal image is
obtained and Df is estimated from this representation
(Feder, 1998). The screen resolution also influences the
border roughness of an object and leads to a deviation
from the theoretical Df as well as from the expected
linearity of the log–log data points. Therefore, Df is
not a very precise or accurate number and significance
should not be extended beyond the second decimal
place. However, Df is a useful additional parameter for
object classification based on the ‘complexity’ of the
object (Jelinek and Spence, 1997, 1998). The more
complex the object or image, the more space filling it is
and the fractional part of the Df value will be higher. A
difference of 0.1 representing a doubling of complexity
(Smith et al., 1989).

A number of different Dfs exist, many of which
receive considerable attention in the mathematics litera-
ture (Falconer, 1985; Takayasu, 1990; Cross, 1994). We
will only consider the Hausdorff and the Minkowski–
Bouligand dimension, as these are potentially useful for
quantitative morphology. Algorithms based on these
dimensions include the calliper, box-counting, mass-ra-
dius, dilation and cumulative intersection methods (Fal-
coner, 1985; Peitgen and Richter, 1986; Schierwagen,
1990; Takayasu, 1990; Nonnenmacher et al., 1994; Je-
linek et al., 1996). The calliper, box counting and
dilation methods are all measures of length, while the
mass-radius and cumulative intersection methods mea-
sure mass.

4. Methods

Data was obtained from 192 previously published
images of retinal neurons that were either stained and
classified solely on their morphology or stained after
physiological recordings (Boycott and Wässle, 1974;
Stone and Clarke, 1980; Wässle et al., 1981a,b; Saito,
1983; Stanford and Sherman, 1984; Stanford, 1987a,b;
Wässle et al., 1987; Ramoa et al., 1988; Wässle and
Boycott, 1991; Hutsler et al., 1993; Kolb et al., 1994; Pu
et al., 1994). In addition, unpublished cells from whole-
mount retinae, provided by Jonathan Stone, (Univer-
sity of Sydney) were included in the analysis. All cells
were drawn using camera lucida projection, as seen in
wholemount preparations.

Since there is some divergence in the literature as to
the ‘correct’ way an object is displayed for applying
fractal analysis (Rigaut, 1983; Smith et al., 1996) all the
images were analyzed in three ways: as binary or real
drawings (black-on-white), as one-pixel-wide border im-
ages and as skeletonised tracings (Fig. 2). All transfor-

Fig. 1. The iterative construction of the Koch curve with a Df of 1.26.
The sequential construction of this fractal begins with a straight line
(A). Then, the middle third is raised to produce an equilateral triangle
(B). Raising equilateral triangles from the middle third of each of the
line segments in the object produces the image in (C). At higher
stages of construction (D, E and so on) the fine detail of the complex
curve would be lost due to resolution limits of the printing process.
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Fig. 2. Example of the different ways used for the analysis of the retinal neurons. (A) Original silhouette of an alpha ganglion cell. (B) One pixel
border image of the original image. (C) Skeletonised drawing of the original image.

mations were performed on a Macintosh computer
using the public domain NIH Image program, devel-
oped at the US National Institutes of Health and
available on the Internet at http://rsb.info.nih.gov/nih-
image/ (Rasband and Bright, 1995).

Two different experimenters in separate laboratories
calculated Dfs, using the same programs, to check the
reliability of each method. To determine the Df of the
cells, the drawings were digitised using a HP-scanner
(resolution 300 dots/in.) and analysed using four box-
counting (grid intersect) procedures (NIH and Univer-
sity of Otago, Harvard University). A dilation (pixel
dilation) method (NIH), as well as two mass-radius
(sandbox) methods (NIH and Charles Sturt University)
and a cumulative intersection method (Sholl method;
Smith and Behar, 1994) from Charles Sturt University,

were also included. These methods are known under
different names as shown in brackets above and in
some instances differ in their implementation (Peitgen
et al., 1992). All fractal analysis methods discussed in
this paper rely on determining the relationship between
the length or the mass of an image with changes in the
scale of the measure. Information on the methods
discussed here can be found at http://www.mhri.edu.au/
~pdb/fractals/fracdim/ and http://www.cee.cornell.edu/
~mdw/fractech.html as well as from the NIH Image
homepage.

The box-counting method can be used to determine
the Df of both scale invariant and self-similar objects
(see NIH ftp://codon.nih.gov/pub/nih-image/user-
macros/box–count–macro.tx). Many research reports
utilising this method are found in the literature and
include Amthor (1988); Morigiwa et al. (1989); Smith et
al. (1989); Block et al. (1990); Honda et al. (1991);
Jelinek et al. (1992); Takeda et al. (1992); Fernandez et
al. (1992; 1994); Kolb et al. (1994); Jelinek and Spence
(1997). To estimate the box-dimension, the Euclidean
space containing the image is divided into a grid of
boxes of size r, where the grid is the size of the image
and the number of non-empty boxes N(r) are counted
(Fig. 3A). r is then made progressively smaller and N(r)
is determined for progressively smaller r. The logarithm
of N(r) versus the logarithm of 1/r gives a line whose
gradient corresponds to Df. The sequence of box sizes
for grids is usually reduced by a factor of 1/2 from one
grid to the next (Peitgen et al., 1992; Takayasu, 1990).

The mass-radius method is defined by the relation-
ship between the area of the image found within a
spheres or circles of increasing radii covering the image.
To implement the mass-radius method of 2D neuron
images, the centre of gravity of the image is first
computed followed by the determination of the radius
of gyration. Every point within a circle determined by
the radius of gyration is then chosen as a local origin
and the cluster mass (number of pixels occupied) within
a distance r of this local origin calculated (Fig. 3C). All

Fig. 3. Fractal analysis methods. (A) Calliper method. (B) Box-count-
ing method. (C) Dilation method. (D) Mass-radius method (from
Smith et al. (1996) with permission).
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Fig. 4. Wholemount view of five different ganglion cell classes in cat retina.

possible choices of local origin are averaged and the
average cluster mass M(r) is obtained. The double
logarithmic plot of M(r) against r gives a quantitative
value for Df (Landini and Rippin, 1993; Caserta et al.,
1995).

While both methods use ‘boxes’, they do so in a
fundamentally different way. In box counting, the
boxes are parts of grids which are laid over the image
and the number of non-empty boxes are counted. The
log (cboxes×box edge size) versus log (box edge size)
plots give the capacity dimension. It is analogous to the
calliper method in that it is an equivalent perimeter and
equivalent ruler. It leads to the D(0) dimension or
zeroth moment of the D(q)’s in multifractal analysis.
With the sandbox method, the boxes are randomly
centered on the fractal and the number of pixels are
counted. Here the log counts or log mean count is
plotted against the log box size. Thus it is a measure of
mass or density with a different D(q) (Smith et al.,
1996).

The dilation method is based on the Minkowski–
Bouligand dimension, (Mandelbrot, 1983; Schroeder,
1991). A common form of this algorithm, as devised by
Flook (1978), has been implemented by Smith et al.
(1989) and others (Amthor, 1988; Porter et al., 1991;
Smith et al., 1991; Siegel et al., 1991; Wingate et al.,
1992; Neale et al., 1993; Smith et al., 1993; Smith and
Behar, 1994). The dilation method replaced each pixel
of the border by a circle whose diameter ranged from 3
to 61 pixels. Applying a convolution procedure (see
NIH macros) structures smaller than the current diame-

ter of the circle were filtered out. The length of the
border for each respective diameter was then deter-
mined by the area of the outline divided by the diame-
ter and Df estimated from the slope of the log–log plot
of length against diameter (Fig. 3B).

The cumulative intersection method was developed
by Schierwagen (1990) and based on the method de-
scribed by Stell and Witkovsky (1973). The Df was
defined as Df= log Nc(r)/log(r) where Nc(r) equalled
the number of cumulative intersections at each concen-
tric circle with increasing radii and r the circle number
from the centre. Fractop is an extension of this method.
The analysis is performed and averaged over a number
of centres (determined by user) that all lie within a ratio
of the radius of gyration (determined by user). For each
of the centre points, the analysis function is then called
up and returns an array of the cumulative sums of the
intersections versus radius from the centre point (Fig.
3D). The gradient of the log of the cumulative intersec-
tions versus log of the radius is then directly related to
the Df (Jelinek et al., 1996).

Before beginning with the analysis of retinal neurons,
every method was tested against a variety of fractals of
known Df. The fractals that were used as testing images
were either scanned from the book of Mandelbrot
(1983) or generated using different routines written by
the authors. In addition, we also analysed Euclidean
objects such as lines, circles and areas. To avoid poten-
tial problems, such as anisotropy or preferred origin of
the measurement method, 10 measures from each image
were computed for different orientations and origins.
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The correct Df for each profile was considered as the
average value of all the measurements.

Statistical differences were analysed using the SPSS/
PC+ software package (SPSS). The Dfs of the same
cell drawing using different methods and image trans-
formations (binary silhouettes, one-pixel-wide borders
or skeletonised images) were compared using the
Scheffe F-test (Welkowitz et al., 1976).

We also investigated the importance of each mea-
surement method in relationship to discriminating or
classifying different morphological ganglion cell classes.
Fig. 4 shows a wholemount view of the five different
ganglion cell types that we have considered in this
study. We used the discriminant analysis module of the
SPSS/PC+ based on Baye’s rule. This procedure al-

Table 2
Mean fractal values using different methods

S.D. Maxi-Mean MinimumMethod Range
mum

Box counting 1 (Image 1.58)
Silhouettes 1.090.62 1.710.131.42

1.09 1.670.580.121.37Outlines
0.69 1.00 1.67Skeleton 1.22 0.15

Box counting 2 (Image Fractal 1.2)
1.41Silhouettes 0.11 1.650.56 1.09

0.111.37 1.75Outlines 1.080.67
1.24 0.13Skeleton 1.14 0.32 1.46

Box counting 3 (University of Otago)
0.520,11 1.601.39Silhouettes 1.09
0.45 1.06Outlines 1.34 1.510.10

0.95Skeleton 1.20 0.09 1.450.50

Grid intercept method (Harvard)
Silhouettes 1.37 1.850.17 0.79 1.05
Outlines 1.24 0.08 1.410.43 0.97
Skeleton 1.19 0.09 0.42 1.400.97

Dilation method (NIH)
Silhouettes 1.731.41 0.13 0.69 1.04
Outlines 1.35 0.10 1.540.50 1.04
Skeleton 1.30 0.10 0.52 1.02 1.54

Mass fractal (NIH)
1.48Silhouettes 0.15 0.69 1.10 1.79

Outlines 1.711.070.641.40 0.11
1.641.010.631.28 0.12Skeleton

Mass fractal (Charles Sturt University)
Silhouettes 1.43 0.17 0.950.80 1.74

1.55 0.28Outlines 3.61 1.03 4.64
1.43 0.15 0.78 0.99 1.77Skeleton

Cumulative intersection method (Charles Sturt University)
1.58 0.99Silhouettes 2.571.67 0.27
0.89 0.99 1.870.17Outlines 1.54
0.70Skeleton 0.14 1.721.021.44

Table 1
Fractal analysis of objects of known fractal dimension

Figure Dilation Mass-radiusBox counting

Line (D=1)
1.0090.010.9990.01 0.9990.01Silhouettes

0.9990.011.0090.01Outlines 0.9990.01
1.0090.010.9990.01 0.9990.01Skeleton

Circle (D=1)
Silhouettes 1.0190.01 1.0090.01 0.9990.01
Outlines 0.9990.011.0090.011.0190.01
Skeleton 0.9990.010.9890.011.0590.01

Koch coastline (D=1.26)
Silhouettes 1.2190.01 1.2490.01 1.2590.01

1.2490.011.2190.01 1.2590.01Outlines
1.1590.01 1.2390.01 1.2490.01Skeleton

Koch Island (D=1.50)
1.6390.02Silhouettes 1.4890.02 1.5290.01

1.4690.01Outlines 1.5090.01 1.4590.02
1.3790.01Skeleton 1.4090.01 1.5490.01

Mandelbrot curve (D=1.63)
1.5590.01Silhouettes 1.5790.01 1.5790.01
1.5590.01 1.5890.01Outlines 1.6390.01
1.5090.01 1.5490.01Skeleton 1.5890.01

Cluster (D=1.71)
1.6590.01Silhouettes 1.6590.01 1.7690.01
1.6590.01 1.6690.01Outlines 1.7490.01
1.6190.01 1.6390.01Skeleton 1.5890.02

Koch box (D=1.80)
1.8790.011.8290.01Silhouettes 1.9090.01

1.8290.01Outlines 1.8790.01 1.9090.01
1.8290.01 1.8790.01Skeleton 1.8790.01

Triangle (D=1.94)
1.7290.01Silhouettes 1.8090.01 1.7490.01
1.6690.01Outlines 1.8090.01 1.7490.01

Skeleton 1.7790.02 1.7890.01 1.7290.01

Square (D=2)
Silhouettes 1.9990.01 1.9090.01 1.9390.01

1.0290.01Outlines 1.0090.01 1.0090.01
0.0690.01 0.2390.01Skeleton 0.1290.02

Mean and S.D. (M9S.D.).

lows classification of a cell into the appropriate cell
group and provides detailed information on the results
of the classification phase (Fernandez et al., 1994).

5. Results

5.1. Analysis of images with known Df

The estimated Df of standard objects obtained with
all methods was not significantly different to the calcu-
lated/nominal value. The results of the most often used
methods—the box counting, dilation and mass-radius
analysis—are shown in Table 1. Different spatial orien-
tations and/or origin of the box mesh yielded slightly
different results, introducing some minor variations in
the numerical values of Df, probably due to the an-
isotropy of the profiles (Jelinek, 1996). All methods
showed similar trends in the results, differing in some
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Table 3
Mean and S.D. (M9S.D.) of fractal dimension in different classes of cat ganglion cells

Cell classFractal method

b g d ea

Box counting (Image 1.58)
Silhouettes 1.5590.061.4590.07 1.2790.08 1.4390.03 1.3790.05

1.4990.09 1.2590.071.4490.06 1.4390.03Outlines 1.3590.03
1.3490.14 1.0290.26 1.3090.07 1.2590.07Skeleton 1.3190.08

Box counting (Image Fractal 1.2)
1.4990.07Silhouettes 1.2590.061.4590.05 1.4490.02 1.3790.05
1.4490.08 1.2390.05Outlines 1.4390.021.4490.04 1.3590.04
1.3190.05 1.0990.06 1.3390.04 1.1990.251.3590.05Skeleton	

Box counting (University of Otago)
1.4890.06Silhouettes 1.2690.051.4390.05 1.4190.03 1.3390.05
1.4090.07 1.2390.041.3990.07 1.4090.03Outlines 1.3190.03
1.2690.03 1.0690.06 1.2790.04 1.2090.04Skeleton 1.2890.03

Grid intercept method (Harvard)
1.4990.07Silhouettes 1.3590.101.3290.08 1.2990.07 1.2690.09
1.3390.05 1.2490.04Outlines 1.2590.041.2690.05 1.2290.05
1.3290.05 1.2290.04 1.2290.04 1.1990.041.2590.05Skeleton	

Dilation (NIH)
1.5390.06 1.2790.06Silhouettes 1.4390.021.4490.06 1.3690.05
1.4690.06 1.2290.051.4190.06 1.2290.05Outlines 1.3490.05

1.3790.05Skeleton	 1.4290.05 1.2090.05 1.2290.05 1.2790.06

Mass fractal (NIH)
1.6290.08 1.3190.111.4990.06 1.4690.04Silhouettes 1.4690.07

1.4390.05Outlines 1.5190.10 1.2790.09 1.4690.04 1.4090.05
1.3690.07Skeleton	 1.3890.13 1.1390.09 1.3690.05 1.3390.10

Mass fractal (Charles Sturt University)
1.5390.10Silhouettes 1.2890.161.5190.11 1.5390.11 1.4590.15
1.7290.10Outlines 1.3890.111.6290.07 1.6090.07 1.6890.08
1.6090.08 1.3290.12 1.5490.111.5990.07 1.4790.13Skeleton	

Cumulative intersection method (Charles Sturt University)
2.0490.22 1.4590.131.7590.10 1.7290.25Silhouettes 1.5790.13

1.6690.07Outlines 1.7590.08 1.3990.09 1.6190.08 1.5090.09
Skeleton 1.6390.091.6490.06 1.3190.12 1.5790.11 1.4990.13

minor yet consistent ways within and between
laboratories.

An analysis of binary versus outlined or skeletonised
images showed that binary images had higher fractal
values than boundary or skeletonised images, although
no statistically significant differences were observed. We
should emphasise that we did not employ solid test
figures (except for areas with a Df=2) since these solid
figures could not be reliably calibrated (for instance
solid triadic or quadric Koch islands did not yield the
expected Df values of 1.26 and 1.50).

5.2. Classification of retinal ganglion cells by using
different fractal analysis methods

The mean Df values for groups of retinal neurons
using different methods are shown in Table 2. We used

an analysis of variance (ANOVA) for repeated mea-
sures and Scheffe Post Hoc test for matched pairs to
investigate differences between means. There were sig-
nificant differences in the mean Dfs (pB0.0001) of
individual groups, indicating that the numerical value
of Df depended strongly on the method used to com-
pute it. Even methods that in theory measured the same
type of dimension (e.g. the different box counting)
showed statistical differences in their measured Df val-
ues (pB0.001) for identical cell groups. Df values were
constant across all methods.

A strong correlation (pB0.001) between all methods
was observed. The only exceptions being the grid inter-
section and the cumulative mass-radius method, that
showed a weaker correlation (pB0.01). These results
confirm the usefulness of fractal analysis as an objective
and quantitative parameter of neural complexity.
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5.3. Comparison of the same method by different
experimenters

In order to address whether the same method and
computer implementation program gave an identical Df
value, the same 192 neuron images were analysed by
two different experimenters using the same computer
programs, but different computers at different loca-
tions. Although there were slightly different Df values,
these were not statistically significant. Furthermore all
procedures were reproducible, with high correlation
coefficients ranging from 0.964 to 1.0.

5.4. Comparison of binary, outlined and skeletonised
images

Binary images, independent of the fractal method,
showed significantly higher fractal values (p=0.001)
compared with outlined and skeletonised. This could be
because the cell interior, with a Df=2, increases the Df
value for binary images (Smith and Lange, 1995; Vis-
cek, 1995).

5.5. Discriminant analysis

As we were interested in the anatomical and func-
tional diversity of cat retinal ganglion cells, we studied
the usefulness of Df as a quantitative measure. In the
cat there are three morphologically distinct ganglion
cell classes/types, the a, b and g that have been agreed
on (Boycott and Wässle, 1974; Kolb et al., 1994). The g

cell class contains several cell types including: the g cells
(Boycott and Wässle, 1974; Kolb et al., 1994), the d

cells (Wässle et al., 1987; Dacey, 1989) and the o cells
(Leventhal et al., 1985).

We posed the following questions: (1) Can fractal
analysis be a useful tool to discriminate between these
ganglion cell classes/types; and (2) which is the best way
to determine Df in order to compare different morpho-
logical cat retinal ganglion cells? An ANOVA and a
discriminant analysis to address these questions were
used.

Although the range of Dfs for the a, b, g, d and o

cells overlapped (Table 3), an ANOVA showed that
there were significant differences in their mean Df. A
discriminant analysis using each method applied indi-
vidually to binary, skeletonised and border only images,
ranked these methods with the dilation method and the
cumulative intersection procedure having the highest
ranked score. Furthermore, classification, in agreement
with the classification scheme previously suggested by
Boycott and Wässle (1974), improved significantly
when binary, instead of border only or skeletonised
images were used. Table 4 shows the percentage of
retinal cells correctly classified using different methods
to compute the Df. Thus the dilation and cumulative

intersection methods, when performed on binary im-
ages, classified a cell correctly with a respective accu-
racy of 65.3 and 62%, in agreement with the Boycott
and Wässle (1974). The discriminant analysis also
showed that Df was a useful parameter for identifying
different classes of retinal neurons (pB0.001).

6. Discussion

The use of different fractal analysis methods in biol-
ogy is not solely based on whether an object is scale-in-
variant and therefore fractal. It can be used as a robust
tool allowing differentiation of morphological features,
such as the complexity of the dendritic branching pat-
tern that are difficult to objectively evaluate using alter-
native analytical methods.

No significant differences were obtained using one
particular method, although manipulation of image

Table 4
Percentage of cat ganglion cells classes correctly classified using only
their fractal dimension values

(%)Fractal method

Box counting (NIH)
Silhouettes 59.2
Outlines 55.1
Skeleton 43.5

Box counting (Image Fractal 1.2)
Silhouettes 53.1
Outlines 52.2
Skeleton 46.1

Box counting (University of Otago)
47.9Silhouettes
54.3Outlines
50.0Skeleton

Grid intercept method
Silhouettes 41.2

38.1Outlines
Skeleton 35.4

Dilation
65.3Silhouettes

Outlines 57.1
Skeleton 45.9

Mass fractal (from NIH)
Silhouettes 59.8
Outlines 46.7

39.1Skeleton

Mass fractal
36.7Silhouettes

Outlines 44.6
Skeleton 36.7

Cumulative intersection method
61.9Silhouettes

Outlines 53.3
Skeleton 36.7
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content (e.g. binary, skeletonised) showed that skele-
tonised images had consistently lower Df values. The
lower estimated Df values for skeletonised images are a
result of removing one of the main contributions to
image complexity, that is the border ruggedness and the
space filling effect of the cell interior.

Since we did obtain different numerical values for Df
using different methods and implementation programs
for the same method, we wanted to ascertain if limita-
tions or problems with the analysis methods could
account for these differences. Possible problems with
some methods included measurements with large mea-
suring elements that exceed the bounds of the image
frame, giving erroneous plots. To avoid this problem
we made the image occupy only 2/3 of the image frame.
With the NIH Image version of the dilation method,
large elements that exceeded the bounds of the image
frame count zero and therefore do not contribute to the
estimate of Df. Another problem, especially with the
box counting method from New Zealand, is that in
order to get an unbiased estimate of Df, it is necessary
to find the minimum number of boxes of a particular
size that cover the object. This can be achieved by
offsetting the origin of the initial grid, but this is a very
time consuming procedure, that usually did not report
more than 0.5% decrease in error (Bourke, 1993). A
more important problem is how the line of best fit is
obtained from the data to determine the slope and
hence Df. Since, for some methods, the points are not
uniformly spaced and the regression fit should not
necessarily weigh all the points equally, this is not an
entirely trivial operation (Russ, 1994). However, for the
box-counting methods discussed, the box sizes are
scaled as a power of 2 and are therefore evenly spaced.
Selecting only a portion of the data points, fitting more
than one regression line to the data points and taking
the average of several slopes along the data points, are
all valid alternatives for estimating Df but may result in
different values (Jelinek and Spence, 1998).

Although the difference between the estimated di-
mensions is usually small in comparison to observa-
tional error (Takayasu, 1990), different Dfs (measuring
length or mass) return different information about the
image. This means that different methods may quantify
different aspects of the image and thus it is important
to establish some criteria for choosing a particular
method. Since the interpretation of the numeric values
of Df, as though the data were from an ideal fractal
should be avoided, our approach has been to evaluate
the usefulness of the different methods to compute Df
for classification tasks based on pattern description.
Our results showed that all fractal analysis methods
yielded consistent Df values and that fractal analysis is
a useful and statistically significant parameter to clas-
sify retinal ganglion cells. For retinal ganglion cell
classification, the dilation and the cumulative intersec-

tion procedures performed on binary silhouettes pro-
vided the most successful correlation compared with
accepted classification schemes.

It should be noted that Df is only a descriptive
parameter, like the dendritic field area or the size of the
soma and does not necessarily imply any underlying
mechanism of form generation or function. In general,
a connection between empirical values of Df and any
specific growth mechanism should be avoided and re-
quire the answering of specific experimental questions.
The question whether particular biological images are
fractal has seen some controversy with Panico and
Sterling (1995) and Murray (1995) suggesting that neu-
ron and vascular patterns are space filling as their
Df=2 but not fractal. Retinal patterns showed no
linear region in the log–log plots, there was no effect of
disarrangement on the log–log plots and no difference
to any other patterns of branched line segments (Panico
and Sterling, 1995). The following comments address
the three points raised by these authors. Unfortunately
log–log plots were not shown in the Panico and Ster-
ling paper and therefore only comments pertaining to
their semi-log results and general discussion can be
made here. Montague and Friedlander (1989), who
analysed the retinal neuron originally and Landini
(1995) who analysed retinal blood vessels, observed
linear log–log. It remains doubtful if the measurement
of local slopes along the curve of the log–log plot and
plotting these as a bar graph over a six-point window
and sliding the window along the entire log–log curve
is a good procedure.

Previous results, published by Caserta et al. (1995)
and corroborated in our laboratory (HJ), suggested
that the linearity of the plot depends on the size of the
window and that the size of that window influenced the
magnitude of Df. A Df of 2 implies that the image
covers the plane completely which is not the case when
the images are viewed on screen (Fig. 4; Panico and
Sterling, 1995) and may also be a consequence of the
range of box sizes or circles chosen (Caserta, pers.
comm.). Murray (1995) and Panico and Sterling (1995)
concluded that images that are space filling are not
fractal. Fractals, however, are defined by their space
filling complexity. The greater the complexity of the
image, the greater it’s space filling capacity. Peitgen et
al. (1992) pointed out that not all self-similar objects
are fractals and cite the peano curve and the devil’s
staircase as examples. These two images are fractal
objects as they display self-similarity (peano curve) or
self-affine scaling (devil’s staircase) but have dimension
values of 2 and 1, respectively. Images such as retinal
ganglion cells that have overlapping processes may also
have dimension values \2. In addition, randomising a
structure results in spreading the structure out evenly
over the plane and will give, on average, a dimension of
2 and is not a good test for fractality. Thus, self-similar-
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ity or the Df value are not absolute indicators of
whether an image is fractal.

Notwithstanding the above-mentioned limitations, it
remains that in many situations a single number, the
Df, summarises concisely the amount of detail and
complexity of neurons (Fernandez et al., 1994). Fur-
thermore, fractal geometry has some other advantages
over its integer-dimensional counterparts. Shrinkage or
expansion of a neuron will not affect their fractal values
as long as the artefact acts equally in all directions and
the measured points still lie on the linear segment of the
graph. This means that the Dfs of different neurons
that have been processed in different batches or at
different laboratories can usually be compared directly
(as long as the same methodology used to calculate Df
is applied).

In summary, an approximation of the Df of natural
objects is now possible by various methods. We suggest
that Df values can be an objective and useful parameter
to characterise the morphological complexity of neu-
rons. Our results reinforce the idea that comparison of
measurements of different profiles, using the same mea-
surement method, may be useful and valid even if the
exact numeric value of the dimension is not necessarily
very accurate. Finally we propose that the Df value of
a neuron should be used, in addition to the other
morphometric parameters typically used to achieve a
rigorous understanding of neural morphology.
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