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Automatic Classification for Pathological Prostate
Images Based on Fractal Analysis

Po-Whei Huang* and Cheng-Hsiung Lee

Abstract—Accurate grading for prostatic carcinoma in patho-
logical images is important to prognosis and treatment planning.
Since human grading is always time-consuming and subjective,
this paper presents a computer-aided system to automatically
grade pathological images according to Gleason grading system
which is the most widespread method for histological grading
of prostate tissues. We proposed two feature extraction methods
based on fractal dimension to analyze variations of intensity
and texture complexity in regions of interest. Each image can be
classified into an appropriate grade by using Bayesian, k-NN,
and support vector machine (SVM) classifiers, respectively.
Leave-one-out and k-fold cross-validation procedures were used
to estimate the correct classification rates (CCR). Experimental
results show that 91.2%, 93.7%, and 93.7% CCR can be achieved
by Bayesian, k-NN, and SVM classifiers, respectively, for a set of
205 pathological prostate images. If our fractal-based feature set
is optimized by the sequential floating forward selection method,
the CCR can be promoted up to 94.6%, 94.2%, and 94.6%, re-
spectively, using each of the above three classifiers. Experimental
results also show that our feature set is better than the feature
sets extracted from multiwavelets, Gabor filters, and gray-level
co-occurrence matrix methods because it has a much smaller size
and still keeps the most powerful discriminating capability in
grading prostate images.

Index Terms—Classification, fractal dimension, Gleason

grading, prostatic carcinoma, prostate image.

I. INTRODUCTION

ROSTATE carcinoma becomes the most common cancer
P in men over the last few years. In the U.S., prostate cancer
is the most frequently diagnosed cancer and ranks second
among cancer deaths in men [1]. In the U.K., more than 32 000
men were diagnosed to have the disease of prostate cancer and
approximately 10000 died from that disease [2]. Biopsy of
the prostate, usually stained by Hematoxylin and Eosin (H&E)
technique, is a key step for confirming the diagnosis of malig-
nancy and guiding treatment [3]. By viewing the microscopic
images of biopsy specimens, pathologists can determine the
histological grades. The most widespread method for histolog-
ical grading of prostate is the Gleason grading system [4].
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Fig. 1. Gleason grading diagram.

The Gleason grading system, developed by Gleason during
the 1970s, is the most powerful tool for determining the long-
term prognosis of prostate cancer cases. In this grading system,
the prostate cancer can be classified into five tumor grades rep-
resented by a number ranging from 1 to 5 with 5 being the
worst grade possible [5]. A classic Gleason grading diagram
containing the five basic tissue patterns associated with the five
tumor grades is shown in Fig. 1. This diagram shows the con-
tinuum of deteriorating cancer cell architecture and the four di-
viding lines along this continuum to identify patients with sig-
nificantly different prognosis. Gleason grading is based upon
the degree of loss of the normal glandular tissue architecture
[5]. The degree of tumor resemblance to normal gland archi-
tecture is called differentiation. Fig. 2 shows four pathological
images of prostatic carcinoma from well differentiated (grade
2) to very poorly differentiated (grade 5) in our image set. As
reported in [6] and [7], the use of texture analysis for prostatic
lesions is very essential to the identification of tissue compo-
sition in prostatic neoplasia. From Figs. 1 and 2, we can also
see that the texture of prostate tissue plays an important role in
Gleason grading for prostate cancer.

Although pathologists know how aggressive the cancer is
likely to be and how quickly it may spread from the result of
a Gleason grade, human visual grading is time-consuming and
very subjective due to inter- and intra-observer variations. At
present, most diagnosis of cancer is still done by visual exami-
nation of radiological images, microscopy of biopsy specimens,
direct observation of tissues, and so on. These views are typ-
ically interpreted in a qualitative manner by clinicians trained
to classify abnormal features such as structural irregularities or
high indices of mitosis. A more quantitative and reproducible
approach for analyzing images is highly desired. Therefore,
how to develop a more objective computer-aided technique for
automatically and correctly grading prostatic carcinoma is the
goal of this research study.
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Fig. 2. Prostate images of different cancer grades. (a) Gleason grade 2.
(b) Gleason grade 3. (c) Gleason grade 4. (d) Gleason grade 5.

To achieve this goal, we propose an automated system for
grading prostatic carcinoma using novel texture analysis tech-
niques to analyze the histological prostate images. For grading
prostate cancer accurately, the texture feature must be powerful
enough to differentiate the five basic tissue patterns as shown in
Fig. 1. Many well-known techniques for texture analysis such
as extracting useful texture features from gray-level co-occur-
rence matrix (GLCM), Gabor filters, and multiwavelet trans-
forms have been exploited. Applications of using these tech-
niques for medical image analysis have been reported in the lit-
erature [7]-[11].

A different approach recently received more attention is the
use of fractal dimension (FD) to describe the texture feature.
This approach has been found to be very effective in texture
analysis and segmentation of images [12]. Recent studies have
also shown that fractal geometry is useful for describing the
pathological architecture of tumors and yielding insights into
the mechanisms of tumor growth [13]. Cancer is often charac-
terized as a chaotic, poorly regulated growth. By focusing on
the irregularity of tumor growth, fractal geometry is well suited
to quantify those morphological characteristics that pathologists
have long used in a qualitative sense to describe malignancies
[13]. As a consequence, it becomes quite natural and very rea-
sonable to consider fractal dimension as a morphometric mea-
sure of irregular structures typical of tumor growth. The use
of fractal analysis in pathology can be found in the literature
[14]-[20].

Since Gleason grading is mainly based on texture properties
of images, the concept of fractal dimension is applied in this
paper for analyzing the texture of prostate tissue. In physical
phenomena, the growth of cancer shows the features of fractal.
Thus, the fractal theory can provide clinically useful informa-
tion for discriminating pathological tissue from healthy tissue
[13].

Based on the above observations and discussions, we pro-
posed two fractal dimension texture features that can be ex-
tracted through differential box-counting (DBC) method [21]
and our entropy-based fractal dimension estimation method and
then combine them together as a FD-based feature set to analyze
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pathological images of prostatic carcinoma. To evaluate the ef-
fectiveness of our FD-based feature set, we applied both leave-
one-out (LOO) and k-fold cross-validation procedures [22] to a
set of 205 pathological prostate images and tested against these
samples using Bayesian, k-nearest neighbor (k-NN), and sup-
port vector machine (SVM) classifiers, respectively, to estimate
the correct classification rates (CCR). As compared to other fea-
tures derived from multi-wavelet transforms, Gabor filters, and
GLCM, our experimental results show that the FD-based feature
set proposed in this paper has better discriminating capability
in terms of higher CCR no matter which classifier is used. To
further optimize the above mentioned feature sets by reducing
their dimensionalities, we applied the sequential floating for-
ward selection (SFFS) method [23] for selecting an optimal set
of features. The experimental results show that our FD-based
feature set has a smaller dimensionality than other feature sets
derived from multiwavelets, Gabor filters, and GLCM while
having better performance in terms of CCR. In particular, the
CCR of our approach is 94.6% using Bayesian classifier, 94.2%
using k-NN classifier, and 94.6% using SVM classifier.

This paper is organized as follows. Related research work
in recent years is described in Section II. Our feature extrac-
tion methods are described in Section III. The classification and
feature selection techniques, as well as the experimental results
are presented in Sections IV and V, respectively. Finally, con-
cluding remarks are given in the last section.

II. RELATED WORK

A. Fractal Geometry

The term fractal comes from the Latin word “fractus” which
means irregular fragments. The concept of fractal geometry was
originally introduced by mathematician Mandelbrot [24]. Ac-
cording to Mandelbrot’s concept, many natural objects exhibit
the fractal property of self-similarity. Based on this concept, a
fractal can be viewed as an object made of sub-objects similar
to the whole, exactly or statistically, in some way. The prop-
erty of self-similarity occurs over an infinite range of scales
in pure mathematical fractal structures such as Koch’s curve,
Cantor set, or Sierpinski triangle, but occurs over a finite range
in many natural objects such as coastlines and snowflakes. The
complexity of such forms can not be described by the classical
Euclidean geometry, largely because it is limited to considering
structures in terms of their topological dimension which is al-
ways an integer. Mandelbrot successfully calculated the coast-
line of Britain by plotting the measured perimeter at different
scales on alog-log graph to come-up with a straight line and then
to take the slope of that line as the fractal dimension [25]. He
found the fractal dimension of the coastline was 1.25. Pentland
[26] presented the evidence that most natural surfaces are spa-
tially isotropic fractals and the intensity images of these surfaces
are also fractals. Since then, fractal analysis has been success-
fully applied to the field of digital image processing [12], [27]
and applications of medical image analysis [13]-[20]. In par-
ticular, fractals can be used as morphometric tools to approxi-
mate cancer for diagnostic and prognostic purposes and a family
of fractal-producing mathematical models known as statistical
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growth processes can mimic tumor growth as pointed out by
Baish and Jain [13].

The concept of self-similarity can be used to estimate the
fractal dimension as follows. Given a bounded set S in Eu-
clidean n-space, S is self-similar if it is the union of IV, distinct
(non-overlapping) copies of itself scaled down by a ratio r. The
fractal dimension D of S is given by the relation 1 = N,.r” or
calculated by the following equation [12]:

_ log(N,)
log(1/r)’

However, natural objects do not exhibit deterministic self-sim-
ilarity because usually they are classified as random fractals,
meaning that each of their smaller parts is statistically similar to
the whole. Therefore, a part of an object becomes statistically
identical to the original object if the original one is scaled down
by a ratio 7 in all dimensions such that (1) is satisfied.

ey

B. Analysis for Pathological Prostate Images

Several methods have been proposed for analyzing patholog-
ical prostate images during the last few years. These methods
can be categorized into two main approaches. The first approach
focused on the identification of the normal and abnormal tissue
composition. Roula et al. [28] proposed an automated system
to classify pathological images into four classes including
stroma (muscular normal tissue), benign prostatic hyperplasia
(BPH, a benign condition), prostatic intraepithelial neoplasia
(PIN, a precursor state for cancer), and prostatic carcinoma
(PCa, abnormal tissue development corresponding to cancer)
for the purpose of prostate cancer diagnosis. The images are
captured in multiple spectral bands. Six texture features and
two structural features were extracted from the image captured
in each channel. To reduce dimensionality of feature space,
principal component analysis (PCA) was applied to select
dominant features. These features were subsequently used by
a supervised classical linear discrimination method to classify
pathological images of prostate tissues. Diamond et al. [6]
proposed a machine vision system to automatically identify
tissue composition in prostatic neoplasia. In their method, tex-
ture and morphological characteristics were used to distinguish
stroma, normal tissue (nonneoplastic epithelial component), or
prostatic carcinoma regions in the image.

The second approach focused on automatic Gleason grading
for prostatic carcinoma. Stotzka er al. [29] extracted statistical
and structural features from the spatial distribution of epithelial
nuclei over the image area. A hybrid neural network/Gaussian
statistical classifier was used to distinguish moderately and
poorly differentiated lesions of the prostate. The authors did not
provide any algorithm for segmenting the epithelial nuclei. It
seems that this stage of operation was still performed manually.
Wetzel et al. [30] proposed a content-based image retrieval
system to assist pathology diagnosis by searching for similar
prostate tumor samples from the image database to evaluate the
prostate tumor grade for the current sample. They used prostate
tumor samples that have been graded by the Gleason system
and stored in the database as an initial domain for analogical
matching. Since the system made no attempt to directly repro-
duce pathologists’ visual analysis, no quantitative result for the
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performance of this system was reported. Smith et al. [31] used
power spectrum to represent the texture characteristics of tissue
images and applied principal component analysis to reduce
dimensionality of feature space. The nearest-neighbor (NN)
classifier was used to classify the images. Their method can
only discriminate grades 1, 2, and 3, but can not discriminate
grades 4 and 5.

Jafari—-Khouzani et al. [7] proposed a method for grading
the pathological images of prostate biopsy samples by using
energy and entropy features calculated from multiwavelet co-
efficients of an image. These multiwavelet features were used
by the k-nearest-neighbor classifier for classification and leave-
one-out procedure was applied to estimate the error rate. Their
image set consists of 100 prostate images with grades from 2 to
5. Although their method had good classification performance
and could discriminate various grades for prostatic carcinoma,
it has the problem that a large number of features are produced
in the feature extraction stage and a lot of computing time is
consumed in the classification stage. For instance, if a multi-
wavelet transform with second level of decomposition is per-
formed, there will be 28 submatrices to be generated. Each sub-
matrix of multiwavelet coefficients is used to compute energy
and entropy features, respectively. Thus, their method will pro-
duce 56 (28 x 2) multiwavelet features to represent texture in-
formation for a prostate image.

Tabesh et al. [32]-[34] proposed an automatic two-stage
system for prostate cancer diagnosis and Gleason grading.
The color, morphometric, and texture features are extracted
from prostate tissue images in their system. Then, linear and
quadratic Gaussian classifiers were used to classify images
into tumor/nontumor classes, and further into low/high grades
for cancer images. Although their method can discriminate
low/high grades, it cannot discriminate grade 2 from grade 3 or
grade 4 from grade 5 in Gleason grading system.

III. FEATURE EXTRACTION

A. Extracting Feature by Differential Box-Counting

There exist several approaches to estimate the fractal dimen-
sion (FD) of an image. Peleg et al. [35] used the e-blanket
method, which is a 2-D generalization of the original approach
suggested by Mandelbrot. Pentland [26] considered the image
intensity surface as fractal Brownian function (fBf) and esti-
mated FD from Fourier power spectrum of fBf. Gangepain and
Roques-Carmes [36] and Keller er al. [37] used variations of
box-counting approach to estimate FD. The differential box-
counting (DBC) method proposed by Sarkar and Chaudhuri [21]
is probably most commonly used because their method is com-
putationally efficient and can cover a wide dynamic range. A
complete comparison of the DBC method with the methods
mentioned above was reported in [21]. Since the DBC method is
superior to other methods in terms of computational efficiency
and giving a better approximation for an image’s intensity sur-
face, we adopt the DBC method to calculate the intensity surface
fractal features for pathological images of prostate.

In general, the images with high-grade prostatic carcinoma
have sharp gray-level variations in neighboring pixels due to the
scenario that dark malignant cells invade stroma. Thus, the DBC
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method can better distinguish low- and high-grade prostatic car-
cinoma by measuring the variations of intensity in local regions.
Before applying the DBC method, the color pathological im-
ages of prostatic tissues are transformed to gray-level images by
getting the R channel from the RGB color space for enhancing
the contrast between malignant cells and background tissues. In
the above preprocessing step, the malignant cells will become
darker because they are stained as blue. Other pathological ob-
jects such as stroma and lumens are stained as red or do not get
stained in H&E-stained pathological images. The DBC method
is described as below.

Consider an image of size M x M pixels that has been scaled
down to a size s X s, where 1 < s < M/2 and s is an integer.
Then, we can get the scale ratio r = s/M. Consider the image
as a 3-D space such that (z,y) represents a 2-D position and
the third coordinate (z) represents the gray level of an image
at position (z,y). The (z, y)-space is divided into grids of size
s X s. Thus, there will be a column of boxes of size s X s X h on
each grid, where |G/h| = | M/s] and G is the total number of
gray levels in an image. Let the maximum and minimum gray
levels of an image in the (z, j)th grid fall in box number & and
[, respectively. The contribution of NV, in the (i, 7 )th grid is ex-
pressed as follows:

ne(i,5) =k -1+ 1. 2)
The contribution from all grids is

Ne = na(ing). 3)
1,

N, is counted for different scale ratio r. Then, the fractal di-
mension D can be estimated from the slope of line approximated
by least-squares linear fitting for log(V,.) versus log(1/7) in (1).

B. Extracting Feature by Entropy-Based Fractal Dimension
Estimation

To analyze the texture complexity in pathological images for
different Gleason grades of prostate carcinoma, this paper fur-
ther proposes an entropy-based method for estimating the fractal
dimension of an image. Based on our observation, the DBC
method only captures the information about intensity difference
which is necessary but not sufficient enough to differentiate all
patterns of different Gleason grades. Our entropy-based fractal
dimension estimation (EBFDE) method can further capture the
information about randomness of pixels. Although the FD-fea-
tures extracted by DBC method and our EBFDE method are not
totally independent of each other, they are partially complemen-
tary. This conjecture is verified by our experiment to be pre-
sented in Section V, which shows that accuracy of classification
can be promoted when we combine these two types of features
together.

The EBFDE method is described as follows. First, a 2-D
image is partitioned into several grids of size s x s. Then, we
compute the entropy for the (i, 7)th grid using the following
equation:

G-1
er(i,5) ==Y prlogs(pr). )
k=0
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In this equation, index k is taken over all grayscales in the
(i, )th grid of an image, py is the probability of gray-level k
occurring in the (,7)th grid of an image, and G is the total
number of gray levels. The contribution from the (¢, 7)th grid
is e,(4,§)2. So the total contribution from all grids is

E,,, = Zer(i7j)2. (5)
i
Again, by applying (1), the fractal dimension D of an image
can be estimated using least-squares linear fitting for log(E,)
versus log(1/7).

C. Combination of Two Fractal Dimension Texture Features

Voss [38] have showed that different textures may have the
same fractal dimension. Therefore, using one single fractal
dimension texture feature to discriminate different textures
is inadequate. Moreover, natural objects usually exhibit the
property of random fractals; in other words, they may not be
self-similar over all scales. Based on this concept, we assume
that various self-similarity properties in a prostatic carcinoma
(PCa) image may be reflected in different individual ranges of
scales. Remember that the scaled down ratiois r = s/M, where
52 is the grid size and M? is the image size. Since M = 384 for
prostate images, we choose s = 2,4,8,16,32,64, and 128 to
include all feasible grid sizes, from 2 x 2 (the smallest one) to
128 x 128 (one ninth of the whole image). Therefore, the range
of scales (r) is {1/192,1/96,1/48,1/24,1/12,1/6,1/3},
which is subsequently divided into three subranges: the sub-
range of small scales {1/192,1/96,1/48}, the subrange of
medium scales {1/48,1/24,1/12}, and the subrange of large
scales {1/12,1/6,1/3}. Here, we allow a small portion of
overlapping between two neighboring sub-ranges because
there is no clear cut between two subranges reflecting different
self-similarity properties. We choose three scales in each sub-
range because this is the minimum requirement for using the
technique of least square linear fit. Since we do not exclude the
possibility that the same self-similarity property is reflected in
all scales, we also use all of the seven scales to estimate the
fractal dimension of an image. As a result, four fractal dimen-
sion texture features can be obtained by DBC method and an-
other four fractal dimension texture features can be obtained by
our EBFDE method. Then, we combine these eight features to
become a feature set { fp1, fp2, fp3, fpa, fE1, fE2, fES, fE4}
as follows.

* fp1 is the FD calculated from grids of size s?(s = 2,4, 8)

using DBC method.

* fpo is the FD calculated from grids of size 52(5 =

8,16, 32) using DBC method.
* fps is the FD calculated from grids of size 32(3 =
32,64, 128) using DBC method.

* fps is the FD calculated from grids of size 32(5 =

2,4,8,16, 32,64, 128) using DBC method.
e fg1 is the FD calculated from the grids of size 32(5 =
2,4,8) using EBFDE method.

* fpeo is the FD calculated from grids of size 32(3 =
8,16, 32) using EBFDE method.

e fm3 is the FD calculated from grids of size s?(s =
32,64, 128) using EBFDE method.
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Fig. 3. (a) Original image. (b) Fractal dimension estimated by DBC method on grids of size s = 8, 16, 32. (c) Fractal dimension estimated by DBC method on
grids of size s = 32,64, 128. (d) Fractal dimension estimated by EBFDE method on grids of size s = 8,16,32. (e) Fractal dimension estimated by EBFDE

method on grids of size s = 32,64,128.

* fg4 is the FD calculated from grids of size 32(3 =
2,4,8,16, 32,64, 128) using EBFDE method.

D. Example

Here, we use an example to demonstrate how the
fractal-based features can be obtained from a pathological
prostate image. Given an image of size 512 X 384 pixels, as
shown in Fig. 3(a), the scale ratio r will be 1/48, 1/24, 1/12,
1/6, and 1/3 when the image is partitioned into grids with
s = §8,16,32,64, and 128, respectively. Then, we apply (2) to
each grid of the image and sum up the results obtained from
all grids as N,.. The three dots from left to right in Fig. 3(b)
represent the log(N,.) versus log(1/r) plot for grids with
s = 32,16, and 8, respectively. The slope of the least-squares
fitting line for these three dots is 2.4856, which is defined as
fp2. Similarly, Fig. 3(c) is the least-squares fitting line for the
plot created by the grids with s = 128,64, and 32. Therefore,
the slope of this line is fps = 2.5628. Now we apply (4) to

each grid of the image and sum up the squares of the results
obtained from all grids as E,.. The least-squares fitting line for
the plot created by the grids with s = 32, 16, and 8 is shown in
Fig. 3(d). The least-squares fitting line for the plot created by
the grids with s = 128, 64, and 32 is shown in Fig. 3(e). Thus,
fE2 = 1.6773 which is the slope of the line in Fig. 3(d), and
fe3 = 1.9319 which is the slope of the line in Fig. 3(e). All
other fractal dimension texture features can be calculated in a
similar way.

IV. CLASSIFICATION AND FEATURE SELECTION

In this section, we first present the three classifiers, Bayesian,
k-NN, and SVM used to test against the feature sets described
in the previous section for classification of pathological images
of prostate carcinoma. Then, we present the leave-one-out and
k-fold cross-validation procedures adopted in this paper to esti-
mate accuracy of classification. Finally, we describe the feature
selection method used in this paper for choosing optimal sub-
sets of features.
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A. Classification Methods

The first classification technique used in this paper for auto-
matic Gleason grading is Bayesian classifier. According to the
Bayesian decision rule of parametric classifier, an observation is
classified to a specific class that has the highest posteriori proba-
bility among all other classes. Suppose we know the prior proba-
bility P(c;) and conditional probability density p(x|c;) of class
¢;, the Bayes formula in (6) shows how to use the observed data
x and prior probability P(c;) to obtain a posteriori probability
P(ci|x) [39]

p(x[ci)P(ci)
Ziczl p(x|ci)P(c;)

where x is the feature vector extracted from a prostate image
by using specific texture analysis method in this paper, C is the
total number of classes, and ¢; represent the class of prostatic
carcinoma of different grade. The decision function can be de-
fined as

P(cilx) = (6)

gi(x) = In(p(x]c:)) + In(P(c;) )

where In denotes natural logarithm. This paper assumed that x
has a multivariate normal distribution with mean vector g, and
covariance matrix ;. Based on the above Gaussian assumption,
we can easily obtain the following decision function [22], [39]:

1 -1

gi(x) = —o(x — IH)Tzi

1
5 (x —u;) — §1n|2i|—|—lnP(ci)

®)

where |;| and 7' are the determinant and inverse of the co-
variance matrix for class ¢;, respectively. If g;(x) > g¢,(x) for
all ¢ # j, then feature vector x will be classified to class ¢; with
i,j € {1,2,...,C}.
The second classifier used in this paper for automatic Gleason
grading is £-NN which is well-known among all nonparametric
classifiers. The k-nearest-neighbor decision rule classifies an
observation by assigning it the label which is most frequently
represented among the k nearest neighbors. A decision is made
by examining all the labels on the k nearest neighbors and taking
a vote. The operation of a k-NN classifier can be summarized
by the following basic steps [40].
1) Compute the distances between the new sample and all
previous samples already classified into clusters.

2) Sort the distances in increasing order and select k& samples
with the smallest distance values.

3) Apply the voting principle: a new sample is added (classi-
fied) to the largest cluster out of & selected samples.

The third classification technique used in this paper for
grading carcinoma prostate images is the SVM method [41],
[42]. Compared with traditional classification methods which
minimize the empirical training error, the goal of SVM is to
minimize the upper bound of the generalization error by finding
the largest margin between the separating hyperplane and the
data. The theory of nonlinear SVM is briefly described as
follows.

Consider a training set of /N samples in binary classifica-
tion. Each sample is denoted by a tuple (x;,y;), where x; =
(wi1,Ti2, ..., 2q)T corresponds to the feature vector for the
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ith sample (: = 1,2,..., N) in d-dimensional space and y; €
{—1,1} denotes its two-class label. Any point x on the hyper-
plane must satisfy the decision boundary w - x + b = 0, where
parameter w is normal to the hyperplane. In practicality, a non-
linear SVM is more widely used for the general case due to its
nonlinear mechanism that can effectively classify data which are
nonseparable by a linear SVM. A nonlinear SVM can be formu-
lated by the following optimization problem:

1 N
: 2
~|lw CE:,L-
g};hll II* + 1:15

subject to y;(w - ®(x;) +b) > 1 —-¢&;,& >0,
i=1,2,...,N (9

where notation ||-|| represents the norm of a vector. In the above
objective function, a training data x; is mapped to a higher di-
mensional space by a kernel function ®, and penalty C is a
user-specified parameter. By minimizing (1/2) [|[w||?, we can get
the maximum margin between the separating hyperplane and the
data. To reduce the number of training errors in linearly non-sep-
arable case, the penalty term C' Zf\;l &; consists of a number of
positive-valued slack variables &; which can be used to construct
a soft margin hyperplane. Then, a test sample z can be classified
according to the following equation:

f(z) = sign(w - ®(z) + b)

N
= sign (Z ;i ®(x;) - P(z) + b) . (10)
i=1

The test sample z is classified to positive class if f(z) = +1,
and is classified to negative class if f(z) = —1. In the above de-
cision boundary equation, the parameters «; are Lagrange mul-
tipliers which can be obtained by using quadratic programming
[43].

The computation of ®(x;) - ®(x;), i.e., the dot product
between pairs of vectors in the transformed space, is quite
cumbersome and may suffer from the curse of dimensionality
problem [43]. Since a kernel function K can be expressed as
K(xi,x;) = ®(x;) - ®(x;) according to the Mercer’s theorem
[43], the decision function of a nonlinear SVM can be written
as

(1)

i=1

~
f(z) = sign <Z oy K (x;,2) + b) .

In this study, we train all data sets with the radial basis
function kernel K (x;,x;) = exp(—v||x; — x;[|*/20%),v > 0.
Also notice that the above description of SVM is only for
binary classification. A number of methods have been proposed
to extend binary SVM to solve multiclass problems [44],
[45]. They essentially separate L mutually exclusive classes
by solving many two-class problems and combining their
predictions in various ways. Two well-known extensions are
one-against-one method [45], [46] and one-against-rest method
[44], [47]. The one-against-one method uses L(L — 1)/2 binary
SVM classifiers for L classes, and each of them provides a
partial decision for classifying a test sample. During the test,
each of the L(L — 1)/2 classifiers votes for one class. The
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winning class is the one with the largest number of accumulated
votes. In case two classes have the same number of votes, we
simply choose one randomly. The one-against-rest method
compares a given class with the rest of all other classes by
constructing L hyperplanes where each hyperplane separates
one class from the other classes. Thus, it generates L decision
functions so that an observed data can be mapped to a class
with the largest decision function value. It has been shown that
the one-against-one method is more suitable for practical use
than the one-against-rest method [44]. In this study, we use
the one-against-one multiclass classification method based on
LIBSVM [45], [48] by combining all pair-wise comparisons of
binary SVM classifiers.

B. Estimation for Accuracy of Classification

In order to estimate the effectiveness of FD-based feature set
proposed in this paper, we adopt the definition of correct classi-
fication rate (CCR) provided by Lee et al. [18]

c
g
CCR ; P(c;) N, (12)
where n; is the number of samples correctly classified to the
ith class via the classifier, V; is the total number of samples in
the ith class, P(¢;) is the prior probability that an observed data
falls in class c¢;.

Given a small set of samples, appropriate strategies for
learning and testing become very critical to avoid over-fitting.
Leave-one-out (LOO) and k-fold cross-validation are two
popular error estimation procedures to reduce bias in machine
learning and testing when sample size is small [22]. The pro-
cedure of LOO method is to take one out of n observations
and use the remaining n — 1 observations as the training set
for deriving the parameters of the classifier. The classifier is
then used to classify the removed observation. This process is
repeated for all n observations to obtain the estimation for ac-
curacy of classification. As to k-fold cross-validation method,
the entire sample set is randomly partitioned into £ disjoint
subsets of equal size, where n is the total number of samples in
the entire set. Then, & — 1 subsets are used to train the classifier
and the remaining subset is used to test for accuracy estimation.
This process is repeated for all distinct choices of k subsets
and the average of correct classification rates is calculated.
Notice that k-fold cross-validation is reduced to LOO if k£ = n.
Many examples of using all of their samples to evaluate the
classifiers based on LOO or k-fold cross-validation procedures
can be found in [7], [28], [32], [49]. In this paper, both methods
are used to estimate accuracy of classification for the sake of
completeness.

C. Feature Selection

Feature selection (FS) is a problem of deciding an optimal
subset of features based on some selecting algorithm. Not only
the cost of recognition can be lowered down by reducing the
number of features, but in some cases the performance of classi-
fication can be promoted by the optimal subset of features [50].
The sequential floating forward selection (SFFS) method is very
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effective in selecting an optimal subset of features [23]. It per-
forms a number of backward steps after applying each forward
step as long as the resulting subsets are better than previous fea-
ture sets of the same size. There will be no backward step if the
performance can not be improved. The SFFS method performs
almost as well as the branch-and-bound algorithm for optimal
feature selection while demanding lower cost of computation
[51].

In this study, we adopt the SFFS method for feature selec-
tion. First, we use the five-fold cross-validation procedure to es-
timate the CCR for the candidate feature subsets selected by the
SFFS method at each stage for each of the Bayesian, k-NN, and
SVM classifiers. Then, we apply both leave-one-out and five-
fold cross-validation procedures to evaluate the performance of
the selected feature set using each of the above three classi-
fiers. Notice that, in applying the five-fold cross-validation pro-
cedure, the five groups of data used in feature selection are dif-
ferent from the five groups of data used in training and testing
by random reassignment. Since we use the entire data set for
feature selection, the test results by using the selected features
are likely optimistically biased.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Image Acquisition

Prostatic tissue was embedded in paraffin cubes after chem-
ical processing and then cut into very thin sections with thick-
ness of 3-5 pum. These sections were placed on glass slides and
stained with colored dyes using Hematoxylin-and-Eosin tech-
nique. The pathological images of prostatic cancer were ac-
quired by a set of equipments including a high-quality optical
microscope, a high resolution CCD camera, and an image ac-
quisition computer system. All images were captured under the
same illumination condition. There were 205 pathological im-
ages with resolution 512 x 384 pixels captured by the above
procedure. We use the following two strategies to avoid inter-
and intra-observer variations that may cause possible ambigui-
ties in classification: 1) images were commonly analyzed by a
group of experienced pathologists in Taichung Veterans General
Hospital of Taiwan and classified into four classes in advance as
“gold standard” for later comparison; 2) the pattern of the cancer
observed in each sample must be greater than 60% of the total
pattern seen in order to assign a primary Gleason grade to that
sample.

Since Grade-1 patterns are very rare, Grade-1 and Grade-2
patterns are regarded as the same class. As aresult, our image set
was divided into four classes: 50 images in Class-1 (Grade-1 and
Grade-2), 72 images in Class-2 (Grade-3), 31 images in Class-3
(Grade-4), and 52 images in Class-4 (Grade-5).

B. Feature Sets Used for Comparison

In this research, we use the feature sets derived from multi-
wavelets, Gabor filters, and GLCM methods to compare with
our FD-based feature set and demonstrate the superiority of our
approach over other methods.

Ten sets of multiwavelet features were proposed by Ja-
fari-Khouzani and Soltanian—Zadeh [7] for grading patho-
logical prostate images. Among them, multiwavelet-SA4,
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multiwavelet-CL, and multiwavelet-GHM have the best per-
formance. The details of defining multiwavelet-SA4, -CL, and
-GHM can be found in [52]-[54]. In multiwavelet methods [7],
a two-level multiwavelet transform of an image is performed
to generate 28 subband images. Since two features, energy and
entropy, are extracted from each subband image for classifi-
cation, there will be a total number of 56 features in a feature
set extracted from multiwavelet-SA4, multiwavelet-CL, or
multiwavelet-GHM method.

In Gabor-filter method, a Gabor filter can be viewed as a
sinusoidal plane of particular frequency and orientation mod-
ulated by a Gaussian envelope. It is a promising method for
texture feature extraction in existing multi-channel filtering ap-
proaches [55], [56]. Roughly speaking, a 2-D Gabor filter acts
like a local band-pass filter with certain optimal joint localiza-
tion properties in the spatial domain and in the spatial frequency
domain. An image is filtered with a set of Gabor filters of dif-
ferent preferred orientations and spatial frequencies to generate
filtered images from which texture features can be extracted. In
our experimental system, we implemented a bank of Gabor fil-
ters using the following five radial frequencies v/2/26,1/2/2°,
V2/2%,1/2/23, \/2/2? and four orientations 0°, 45°, 90°, and
135°. How to choose appropriate radial frequencies for a bank
of Gabor filters can be found in [55]. In our case, a set of 20
filtered images will be generated by Gabor filters method. We
extract three features energy, entropy, and magnitude from each
of the 20 filtered images. As a consequence, three sets of fea-
tures called Gabor-Energy, Gabor-Entropy, and Gabor-Magni-
tude are formed with each one containing 20 features. We can
combine these three sets of features to form a feature set of di-
mension 60 called Gabor-Combination.

In GLCM method, five statistical texture feature sets (energy,
entropy, contrast, correlation, and homogeneity) are extracted
from co-occurrence matrixes based on a particular scalar dis-
tance and four orientations 0°, 45°, 90°, and 135°. To deter-
mine an appropriate scalar distance for better capturing a spe-
cific feature, we estimate the CCR of that feature using ten dis-
tances (from 1 to 10 pixels) by Bayesian classifier and choose
the distance which generates the highest CCR. In our experi-
ment, the best distance is three pixels to capture Energy feature,
four pixels to capture Entropy and Contrast features, one pixel
to capture Correlation feature, and eight pixels to capture Ho-
mogeneity feature. Once we obtain the best distance which al-
lows us to achieve the highest CCR for a specific feature, we can
use that distance to generate four co-occurrence matrixes with
each matrix corresponding to an orientation. Therefore, five fea-
ture sets are generated with each one containing four features.
The five feature sets are called GLCM-Contrast, GLCM-Corre-
lation, GLCM-Energy, GLCM-Homogeneity, and GLCM-En-
tropy, respectively. Like the Gabor-filter method, we can com-
bine the above five feature sets together to form a feature set of
dimension 20 called GLCM-Combination.

C. Performance of FD-Based Feature Set

Let us look at the performance of the FD-based
feature set proposed in this paper in terms

of CCR. For convenience of explanation, let

fp ={/fp1, fp2, fD3, fDa}, FE = {[fEL, fE2, fE3, fE4}, and
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TABLE I
COMPARISONS OF CCR FOR THE FEATURE SETS PROPOSED IN THIS
PAPER USING BAYESIAN, k£-NN, AND SVM CLASSIFIERS
EVALUATED BY LEAVE-ONE-OUT METHOD

Features fo fe Jotfe
Base(:si:z% )| 02k arosen | 863+ 470058) 912%39
k=1 89{5;—;{;‘]-2 1 86[5(;—;04]-7 k=1 | 932435
ki\?ﬁ(t‘%) k=3 92[025153]7 =3 87{&;—;;}-5 =3 | 922437
k=5 9(;-07_3166‘]‘0 =S 8768_116;4]‘3 k=5 | 917438
SCVCNT (?,Z) 932435[0419] | 902 4.10.096] 937433

Note: The number in the bracket [] is a p-value of the null hypothesis Ho: Py <
P,. Py is the CCR of using f, + fr and P, is the CCR of using fp (or f).

TABLE II
COMPARISONS OF CCR FOR THE FEATURE SETS PROPOSED IN THIS PAPER
USING BAYESIAN, k-NN, AND SVM CLASSIFIERS EVALUATED
BY FIVE-FOLD CROSS-VALIDATION METHOD

Features fo fe fotfe
BaSeCs}izr??% ) 902+4.1[0364] | 86.8%4.6[0.077] 912+39
=1 89{.()%;}.2 =l 86[501(-)(:11.7 =1 93,731 3.
ki\?l\}}(t‘)’%) =3 91[02;_;83]9 =3 87[5574].5 =3 92.76i 3.
=5 8?6?1%;]2 =5 8?68- 1%;]2 =5 93.25i 3.
S(i/CI\EI{(EZ) 902+4.1[0.182] | 883 4.4[0.064] 927+36

Note: The number in the bracket [] is a p-value of the null hypothesis Hy: Py <
P1. Py is the CCR of using fp + f¢ and P, is the CCR of using fp (or f).

fp+ fg=1{fp1, fp2, fD3, fD4; fE1, fE2, fE3, fE4}. Table 1
shows the performance of feature sets fp, fg, and fp + fg

using Bayesian, k-NN, and SVM classifiers evaluated by
leave-one-out method. Hereafter, we use notation z + y% to
represent a 95% confidence interval for CCR, where x and y are
the sample mean and 1.96 sample standard error, respectively.
Moreover, we compute the p-value for the null hypothesis
Hy : Py < P;, where P is the CCR of using method A and P
is the CCR of using method B. If this p-value is less than 0.05,
we can reject the above null hypothesis at the 5% significance
level. In other words, we may conclude that the CCR of using
method A is significantly higher than the CCR of using method
B at the 5% significance level. The p-values are listed inside
the brackets in tables from Table I-VIII.

In Table I, feature set fp has a CCR of 90.2 £ 4.1% using
Bayesian classifier, 92.2+3.7% using k-NN classifier for k& = 3,
and 93.2 £ 3.5% using SVM classifier. The feature set f g has
a CCR of 86.3 £ 4.7% using Bayesian classifier, 88.8 & 4.3%
using k-NN classifier for & = 5, and 90.2 £ 4.1% using SVM
classifier. The combined feature set f, + fg has a CCR of
91.2 4+ 3.9% using Bayesian classifier, 93.2 £ 3.5% using k-NN
classifier for k£ = 1, and 93.7 £ 3.3% using SVM classifier. The
experimental result indicates that both feature sets fp and fg
are powerful in discriminating pathological images of prostatic
carcinoma. Feature sets fp, and fg may be complementary to
each other because the CCR has a chance to become higher
when we combine these two sets together. However, there are
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TABLE III
COMPARISONS OF CCR FOR VARIOUS FEATURE SETS USING BAYESIAN CLASSIFIER
EVALUATED BY LEAVE-ONE-OUT AND FIVE-FOLD CROSS-VALIDATION PROCEDURES
Feature Sets CCR evaluated by leave-one-out (%) CCR evaluated by 5-fold cross-validation (%)
Multiwavelet - SA4 (56) -
Multiwavelet - CL (56) -
Multiwavelet - GHM (56) -
Gabor - Energy (20) 82.0+ 5.3[0.002] 75.7% 5.9 [0.000]
Gabor - Entropy (20) 67.3 1 6.4[0.000] 649 6.5[0.000]
Gabor - Magnitude (20) 839+ 5.0[0.012] 79.0 % 5.6 [0.000]
Gabor - Combination (60) -
GLCM - Contrast (4) 82.9+ 5.2[0.006] 80.5+ 5.4 [0.001]
GLCM - Correlation (4) 68.8 1 6.3 [0.000] 68.0 = 6.4 [0.000]
GLCM - Energy (4) 66.8+ 6.5 [0.000] 66.2 % 6.5[0.000]
GLCM - Homogeneity (4) 73.2% 6.1 [0.000] 72.4=+ 6.1 [0.000]
GLCM - Entropy (4) 85.9+ 4.8 [0.045] 84.1+5.0[0.014]
GLCM - Combination (20) 84.4+5.0[0.017] 82.2+ 5.2[0.003]
fotfe(® 912+t39 91.2£39
Note 1: The notation ‘---* represents that the covariance matrix (Y. ) of a specific feature set is singular, so its inverse doesn’t exist and
there is no way to calculate CCR by Bayesian classifier.
Note 2: The number in the bracket [] is a p-value of the null hypothesis Hy: Py < Py.
P, is the CCR of using our feature set (the last row); P, is the CCR of using other feature set.
TABLE 1V
COMPARISONS OF CCR FOR VARIOUS FEATURE SETS USING k-NN CLASSIFIER EVALUATED BY
LEAVE-ONE-OUT AND FIVE-FOLD CROSS-VALIDATION PROCEDURES
- - 0, = - 1 1 0,
Feature Sets CCR evaluated by leave-one-out (%) CCR evaluated by 5-fold cross-validation (%)
k=1 k=3 k=5 k=1 k=3 k=5
. 902t 4.1 922+37 89.8+42 803+42 90.7t 4.0 898+ 42
- S
Multiwavelet - SA4 (56) [0.135] [0.500] [0.253] [0.054] [0.231] [0.108]

. 922+3.7 92.7+ 3.6 90.2+ 4.1 912+39 912+39 902+ 4.1
Multiwavelet - CL (36) [0.349] [0.576] [0.298] [0.169] [0.288] [0.135]

. 902t 4.1 873146 883+ 4.4 883+ 44 863+ 4.7 863+ 4.7
Multiwavelet - GHM (36) [0.135] [0.050] [0.125] [0.028] [0.017] [0.010]
Gabor - Energy (20) 888143 90.7+ 4.0 873%46 8681+ 4.6 893142 878145

&y [0.059] [0.294] [0.073] [0.009] [0.114] [0.031]
_ 76.1 5.8 766+ 58 74.6 % 6.0 75659 74.6 £ 6.0 756%59

Gabor - Entropy (20) [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
. 86.8+ 4.6 89.8+42 883+ 44 88.8+43 888143 878145

Gabor - Magnitude (20) [0.015] [0.198] [0.125] [0.039] [0.086] [0.031]
L 922+3.7 91.7t38 91.7£3.8 912+t39 91.7t38 90.7t4.0

Gabor - Combination (60) [0.349] [0.426] [0.500] [0.169] [0.353] [0.176]
76.6 5.8 74.6% 6.0 77.1£ 5.8 742+ 6.0 76.6 5.8 781157

GLCM - Contrast (4) [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
. 634166 6341 6.6 6291 6.6 620t 6.6 61.5t6.7 61.5t6.7

GLCM - Correlation (4) [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
61.0+6.7 654+ 6.5 649+t 6.5 639+ 6.6 639+ 6.6 644+ 6.6

GLCM - Energy (4) [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
. 75.1+59 76.1+5.8 78157 712+ 6.2 72.7% 6.1 74.6+ 6.0

GLCM - Homogeneity (4) [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
80.0x5.5 79.0x 5.6 79.0+ 5.6 76.6+ 5.8 74.6+ 6.0 73.2% 6.1

GLCM - Entropy (4) [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
. 83.4+5.1 824152 83.4+5.1 854148 829+52 83.4+5.1

GLCM - Combination (20) [0.001] [0.001] [0.005] [0.003] [0.001] [0.001]
fotfe(® 932+35 922+37 91.7t3.8 93.7t3.3 92.7t3.6 932+35

Note: The number in the bracket [] is a p-value of the null hypothesis H: Py < P;.
Py is the CCR of using our feature set (the last row); P, is the CCR of using other feature set.
some redundancies between fp and fg because the improve- Table II shows the performance of feature sets fp, fg, and

ment in CCR is not significant for f + fg. We will discuss fp + fg using Bayesian, £-NN, and SVM classifiers evalu-
the issue of feature selection (or feature optimization) in ated by five-fold cross-validation method. Feature set f has
Section V-E. an 90.2 £ 4.1% CCR using Bayesian classifier, 91.2 £+ 3.9%
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TABLE V

COMPARISONS OF CCR FOR VARIOUS FEATURE SETS USING SVM CLASSIFIER EVALUATED BY
LEAVE-ONE-OUT AND FIVE-FOLD CROSS-VALIDATION PROCEDURES

Feature Sets

CCR evaluated by leave-one-out (%)

CCR evaluated by 5-fold cross-validation (%)

Multiwavelet - SA4 (56)

932+ 3.5[0.419]

912+ 3.9[0.288]

Multiwavelet - CL (56)

932+ 3.5[0.419]

89.8 + 4.2 [0.149]

Multiwavelet - GHM (56)

91.2+3.9[0.169]

92.2+ 3.7[0.424]

Gabor - Energy (20)

91.7+ 3.8[0.218]

89.3+4.2[0.114]

Gabor - Entropy (20)

80.5 + 5.4 [0.000]

77.6 %+ 5.7 [0.000]

Gabor - Magnitude (20)

92.7+ 3.6 [0.344]

90.7+ 4.0 [0.231]

Gabor - Combination (60)

90.7+ 4.0 [0.128]

91.7+ 3.8 [0.353]

GLCM - Contrast (4)

79.5 % 5.5 [0.000]

75.1 % 5.9 [0.000]

GLCM - Correlation (4)

78.5 £ 5.6 [0.000]

74.2 % 6.0 [0.000]

GLCM - Energy (4)

76.1+ 5.8 [0.000]

60.0 + 6.7 [0.000]

GLCM - Homogeneity (4)

81.5+ 5.3 [0.000]

73.7+ 6.0 [0.000]

GLCM - Entropy (4)

88.8+ 4.3 [0.039]

81.0+ 5.4 [0.000]

GLCM - Combination (20)

89.3+ 4.2 [0.055]

88.3 + 4.4 [0.064]

Jo + 1 (8) 93.7+£33

927+ 3.6

Note: The number in the bracket [] is a p-value of the null hypothesis Hy: Py < P.
P, is the CCR of using our feature set (the last row); P, is the CCR of using other feature set.

TABLE VI
COMPARISONS OF CCR FOR VARIOUS FEATURE SETS WITH SFFS FEATURE SELECTION USING BAYESIAN CLASSIFIER
EVALUATED BY LEAVE-ONE-OUT AND 5-FOLD CROSS-V ALIDATION PROCEDURES

Feature Sefs CCR evaluated by CCR evalugted.by 5-fold # of Features
leave-one-out (%) cross-validation (%) Selected

Multiwavelet - SA4 93.7+ 3.3[0.500] 89.3 £ 4.210.024] 11
Multiwavelet - CL 92.7+ 3.6 [0.344] 89.8+4.210.034] 11
Multiwavelet - GHM 90.2+ 4.1 [0.096] 88.8+4.3[0.016] 11
Gabor - Energy 89.3+ 4.2 [0.055] 86.8 + 4.6 [0.003] 11
Gabor - Entropy 80.0+ 5.5[0.000] 75.6 £ 5.9 [0.000] 11
Gabor - Magnitude 91.7+3.8[0.218] 88.314.4[0.011] 6
Gabor - Combination 91.7+3.8[0.218] 90.7 £ 4.0 [0.065] 7
GLCM - Combination 88.8 + 4.310.039] 87.3 %+ 4.6[0.005] 9
Jo + fe={p1, fo2, fo3. fous, fr4 ) 93.7+33 946+ 3.1 5

Note: The number in the bracket [] is a p-value of the null hypothesis Hy: Py < P;.
Py is the CCR of using our feature set (the last row); P, is the CCR of using other feature set.

CCR using k-NN classifier for £ = 3, and 90.2 + 4.1% CCR
using SVM classifier. The feature set fg has an 86.8 £ 4.6%
CCR using Bayesian classifier, 89.8 + 4.2% CCR using k-NN
classifier for k = 5, and 88.3+4.4% CCR using SVM classifier.
The combined feature set f + fg has an 91.2 + 3.9% CCR
using Bayesian classifier, 93.7 £ 3.3% CCR using k-NN clas-
sifier for £ = 1, and 92.7 & 3.6% CCR using SVM classifier.
The difference did not achieve statistical significance although
a trend was observed from Tables I and II that the CCR could
be improved if fp + fg is used as the feature set instead of fp
or fg alone.

D. Comparison of CCR Using Classifiers Without Feature
Selection

Here, we want to evaluate the performance of other feature
sets as described in Section V-B and compare with the perfor-
mance of our feature set fp + fg. Table III shows the CCR
for various feature sets using Bayesian classifier. If the perfor-
mance is evaluated by leave-one-out method, fp + fg has the
highest CCR (91.2 + 3.9%); GLCM-Entropy has the second
highest CCR (85.9 + 4.8%); and GLCM-Combination has the
third highest CCR (84.4 £ 5.0%). If the performance is eval-
uated by five-fold cross-validation method, the first three fea-

ture sets having the highest CCR are still fp + fg(91.2 +
3.9%), GLCM-Entropy (84.1 £ 5.0%), and GLCM-Combina-
tion (82.2 + 5.2%). Table III shows that the FD-based feature
set proposed in this paper is better than all other feature sets ex-
tracted from Gabor-filter and GLCM methods in terms of CCR
at the 5% significance level. In this table, we did not provide
any CCR information for Multiwavelet-SA4, Multiwavelet-CL,
Multiwavelet-GHM, and Gabor-Combination because the co-
variance matrixes of these feature sets are singular and their in-
verse matrixes do not exist. Consequently, there is no way to
apply the decision function stated in (8).

Table IV shows the classification performance of various
feature sets using k-NN classifier by leave-one-out and five-fold
cross-validation procedures. The feature set fp, + fg still has
the highest CCR as compared to all feature sets extracted from
Gabor-filters and GLCM methods. Such a result is consistent
with the one listed in Table III. However, the difference in CCR
among the feature sets Multiwavelet-SA4, Multiwavelet-CL,
Gabor-Combination, and fp, + f g is unlikely to be statistically
significant at the 5% significance level.

Table V shows the classification performance of various
feature sets using SVM classifier. Overall speaking, the correct
classification rates for all feature sets using SVM classifier
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TABLE VII
COMPARISONS OF CCR FOR VARIOUS FEATURE SETS WITH SFFS FEATURE SELECTION USING k-NN CLASSIFIER
EVALUATED BY LEAVE-ONE-OUT AND FIVE-FOLD CROSS-VALIDATION PROCEDURES

CCR evaluated by leave-one-out (%) CCR evaluated by 5-fold cross-validation (%) #of
Feature Sets Features
k=1 k=3 k=5 k=1 k=3 k=5 Selected
. 912+3.9 942+32 922+3.7 902+ 4.1 912+39 90.7+ 4.0
Multiwavelet - SA4 [0.169] [0.500] [0.276] [0.065] [0.169] [0.176] 1
Multiwavelet - CL 88.8+ 4.3 937433 9.7+ 3.6 883+ 4.4 902+ 4.1 91.7+3.8 "
[0.039] [0.416] [0.344] [0.017] [0.096] [0.283]
. 883+ 4.4 922437 902+ 4.1 87.3% 4.6 893+ 42 863+ 4.7
Multiwavelet - GHM [0.028] [0.210] [0.096] [0.008] [0.055] [0.010] 6
Gabor - Encrgy 87.8+ 4.5 90.7+ 4.0 90.7+ 4.0 859+ 4.8 87.8% 4.5 859+ 4.8 0
[0.019] [0.089] [0.128] [0.002] [0.019] [0.008]
Gabor - Entropy 742+ 6.0 795+ 5.5 79.0+ 5.6 717+ 62 776+ 5.7 76.1% 5.8 0
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Gabor - Magnitude 88.8+ 4.3 912439 93.7+33 86.8% 4.6 90.7+ 4.0 893+ 42 0
[0.039] [0.121] [0.500] [0.005] [0.128] [0.081]
Gabor - Combination | 91239 932435 922+3.7 89.8+ 4.2 902+ 4.1 893+ 4.2 0
[0.169] [0.338] [0.276] [0.050] [0.096] [0.081]
. 829+52 859+ 4.8 873+ 4.6 81.5+523 863+ 4.7 849+ 49
GLCM - Combination [0.000] [0.002] [0.013] [0.000] [0.006] [0.003] 4
fotfi=lfonfonfis} | 937433 942+32 9374323 942432 93.7+323 932435 3

Note: The number in the bracket [] is a p-value of the null hypothesis Ho: Py < P;.
P, is the CCR of using our feature set (the last row); P, is the CCR of using other feature set.

TABLE VIII
COMPARISONS OF CCR FOR VARIOUS FEATURE SETS WITH SFFS FEATURE SELECTION USING SVM CLASSIFIER EVALUATED
BY LEAVE-ONE-OUT AND FIVE-FOLD CROSS-VALIDATION PROCEDURES

Feature Sets CCR evaluated by CCR evalua'lted.by 5-fold # of Features
leave-one-out (%) cross-validation (%) Selected
Multiwavelet - SA4 94.2 1 3.210.430] 93.2 % 3.5[0.354] 8
Multiwavelet - CL 942+ 3.2[0.430] 93.7+ 3.3[0.433] 11
Multiwavelet - GHM 93.7 + 3.3 [0.349] 92.7+ 3.6[0.284] 8
Gabor - Energy 93.2+3.5[0.277] 92.7+ 3.6[0.284] 11
Gabor - Entropy 84.4+ 5.0 [0.000] 82.9+ 5.2[0.000] 8
Gabor - Magnitude 93.7 £ 3.3 [0.349] 94.1 £ 3.210.500] 12
Gabor - Combination 92.7+3.6[0.215] 91.2+3.9[0.130] 15
GLCM - Combination 88.3+4.4[0.011] 86.8 £ 4.6 [0.006]
So +fe=Upi, Sz, fos, Jer, Jue ) 94.6+ 3.1 94.1+32 5

Note: The number in the bracket [] is a p-value of the null hypothesis Hy: Py < P,
P, is the CCR of using our feature set (the last row); P, is the CCR of using other feature set.

are slightly higher than those using Bayesian or k-NN clas-
sifiers. Comparing with Gabor-Entropy, GLCM-Contrast,
GLCM-Correlation, GLCM-Energy, GLCM-Homogeneity,
and GLCM-Entropy, our FD-based feature set f, + fg has
a better performance in terms of CCR at the 5% significance
level. However, comparing with Multiwavelet-SA4, Multi-
wavelet-CL, Multiwavelet-GHM, Gabor-Energy, Gabor-Mag-
nitude, Gabor-Combination, and GLCM-Combination, the
difference in CCR did not achieve statistical significance al-
though a trend was observed. Notice that the dimensionalities of
the feature sets derived from multiwavelets, Gabor filters, and
GLCM-Combination are 56, 20, and 20, respectively; however,
the dimensionality of our feature set f, + fg is only 8.

E. Comparison of CCR Using Classifiers With Feature
Selection

Feature selection is a fundamental problem in statistical
pattern recognition and machine learning. In Section III, we
present the method of constructing feature set fp + fg based
on fractal dimension calculation for discriminating pathological

images of prostate carcinoma. In the previous subsection, we
have demonstrated the effectiveness of fp + fg and compare
its performance with those feature sets extracted from mul-
tiwavelets, Gabor filters, and GLCM methods. Although we
have shown that f and fg are complementary to a certain
degree, some redundancy may exist between them. To reduce
this redundancy, or equivalently to reduce the dimensionality
of feature set fp + fg, the SFFS feature selection method
described in Section IV is applied. Similarly, all other feature
sets are also optimized by the SFFS method and their classifica-
tion results are presented in this subsection. Notice that feature
sets GLCM-Contrast, GLCM-Correlation, GLCM-Energy,
GLCM-Homogeneity, and GLCM-Entropy are removed from
the list of comparison because their respective dimension is
only 4. We can find their performance without feature selection
from Tables IT1I-V.

Tables VI-VIII show the classification performance of var-
ious feature sets after feature selection using Bayesian, k-NN,
and SVM classifiers, respectively. We would like to highlight
two important aspects based on the results shown in these three
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tables: 1) a trend that feature set fp + fg has the highest CCR
was observed; 2) the feature set fp + fg has the smallest di-
mension.

If we use Bayesian classifier to cooperate with the SFFS fea-
ture selection method, the feature set f p,+ f g will be reduced to
a set containing only five features {fp1, fp2, fp3, fD4, fEa}.
As we can see from Table VI, the correct classification rates of
the optimized FD-based feature set fp + fg are 93.7 = 3.3%
and 94.6 + 3.1% using leave-one-out and five-fold cross-valida-
tion procedures, respectively. Let us look at the third column of
Table VI, the feature set f p+ fg = {fp1, fD2, [D3, D4, [E4}
has significantly higher CCR than all other feature sets at the
5% significance level except Gabor—Combination. Although
Gabor-Combination has a very competitive performance, it
has a dimension of 7 which is still longer than the length of
fp+ fE

If we use k-NN classifier to cooperate with the SFFS feature
selection method, the feature set fp + fg will be reduced to
a set containing only 3 features {fp1, fp4, fra}. Table VII
shows the classification performance of various feature sets
using k-NN classifier with SFFS as the feature selection
method. The optimized feature set f, + f g can achieve a CCR
of 94.2 &+ 3.2% for k = 3 using leave-one-out procedure and a
CCR of 94.2 + 3.2% for k = 1 using five-fold cross-validation
procedure. The competitive feature sets are Multiwavelet-SA4,
Multiwavelet-CL, and Gabor-Combination. We would like
to point out that the dimensions of Multiwavelet-SA4, Mul-
tiwavelet-CL, and Gabor-Combination are 11, 12, and 10,
respectively, while the dimension of optimized fp + fg is
only 3.

When we use SVM classifier to cooperate with the SFFS
feature selection method, the feature set fp + fg is reduced to
a set containing five features { fp1, fp2, fps3, fE1, fEa}, Which
is still the smallest among all other feature sets. As we can see
from Table VIII, the correct classification rates of fp + fg
are 94.6 + 3.1% and 94.1 + 3.2% using leave-one-out and
five-fold cross-validation procedures, respectively. The com-
petitive feature sets are Multiwavelet-SA4, Multiwavelet-CL,
Multiwavelet-GHM, Gabor-Energy, Gabor-Magnitude, and
Gabor-Combination in terms of CCR. However, dimensions
of Multiwavelet-SA4, Multiwavelet-CL, Multiwavelet-GHM,
Gabor-Energy, Gabor-Magnitude, and Gabor-Combination are
8, 11, 8, 11, 12, and 15, respectively, while the dimension of
optimized fp + fg is only 5.

By summarizing all the experimental results from
Table III-VIII, we may conclude that the FD-based fea-
ture set proposed in this paper has the smallest dimension
while having either better or at least the same performance
based on p-values as well as statistical results with a 95%
confidence interval when compared to the feature sets extracted
from multiwavelets, Gabor-filter, and GLCM methods. With
feature selection, the correct classification rates for all feature
sets using the three classifiers become slightly higher and their
dimensions are reduced significantly. The optimized fp + fg
feature set did not exclude all the features in f, or all the fea-
tures in f g as we can see from the last row in Tables VI-VIII.
This implies that Differential Box-Counting method and En-
tropy-Based Fractal Dimension Estimation method used in this
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paper are both helpful to extract most informative FD-based
features for achieving best performance in classification.

VI. DISCUSSION AND CONCLUSION

This paper presents an automated system for grading patho-
logical images of prostatic carcinoma. The feature set proposed
in this paper can be generated from pathological images using
differential box-counting and entropy-based fractal dimension
estimation techniques. The effectiveness of our proposed feature
set was tested by Bayesian, k-NN, and SVM classifiers, respec-
tively, using both of leave-one-out and k-fold cross-validation
sampling procedures. A set of 205 pathological prostate images
were used as the samples for classification. Experimental re-
sults demonstrated that the FD-based feature set proposed in this
paper can provide very useful information for classifying patho-
logical prostate images into four classes in Gleason grading
system. As compared to other feature sets derived from multi-
wavelets, Gabor filters, and GLCM methods, our feature set has
the highest correct classification rate and smallest dimension-
ality. With feature selection, our proposed feature set achieved
a CCR of 93.7% using Bayesian classifier, a CCR of 94.2%
using k-NN classifier, and a CCR of 94.6% using SVM classi-
fier if leave-one-out was used as the evaluation procedure. When
five-fold cross-validation was used as the evaluation procedure,
a CCR of 94.6%, 94.2%, and 94.1% was achieved by Bayesian,
k-NN, and SVM classifiers, respectively.

The concept of fractal geometry was originally introduced
by Mandelbrot. The formula used to estimate fractal dimen-
sion D = log(N,.)/log(1/r) is also well known. However, we
would like to emphasize the following points to highlight the
main contributions of this paper.

1) We successfully propose a fractal dimension feature set of

very small size to grade prostate images effectively.

2) It is unobvious to calculate NV, and to define down scaled
ratio r so that the property of “self-similarity” in prostate
images can be reflected appropriately in a range of scales.
In this paper, we successfully provide an elaborative design
for defining the subranges of scales so that feasible FD
texture features can be extracted from prostate images.

3) We propose a novel EBFDE method to calculate N, based
on entropy. By combining the FD features derived from
entropy with the FD features derived from intensity differ-
ence, we come-up with a very powerful and concise feature
set to facilitate Gleason grading for prostate images.

4) If we want to select a single category of features for grading
prostate images, we demonstrate by extensive experiments
that FD category has either better or at least the same per-
formance statistically as compared to multiwavelet, Gabor,
and GLCM categories. However, the feature set in FD cat-
egory proposed in this paper has the smallest size. Such a
result suggests that FD category will still have significant
contributions and should be included for consideration if
we want to select features from multicategories.

We would like to further point out that the results from
our feature selection process are likely optimistically biased
because we only have a small data set (205 images in total and
31 to 72 images for each of the four classes) and we use the
entire data set for feature selection only once for each feature
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set and each of the classifiers. Currently, we treat Grade-1 and
Grade-2 in Gleason grading system as the same class because
Grade-1 patterns are very rare and difficult to acquire. In our
future study, we will apply our method to test the discriminating
capability between Grade-1 and Grade-2 patterns when we
gather enough number of images belonging to Grade-1 pattern.
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