MODELOS MATEMÁTICOS EN BIOLOGÍA ANIMAL, BIOLOGÍA VEGETAL Y ECOLOGÍA

Dinámica de claros y sucesión forestal¹

El modelo de Horn (1974) de sucesión forestal se basa en analizar la mortalidad de árboles individuales y su sustitución. Partimos de una población en la que la probabilidad de que, dentro de un intervalo de tiempo, un árbol de esa especie sea reemplazado por otro de la misma especie o de otra diferente viene dada por la siguiente tabla:

	ABEDUL	TUPELO NEGRO	ARCE ROJO	HAYA
ABEDUL	0.05	0.01	0	0
TUPELO NEGRO	0.36	0.57	0.14	0.01
ARCE ROJO	0.50	0.25	0.55	0.03
HAYA	0.09	0.17	0.31	0.96

Deseamos conocer, en primer lugar, que si partimos inicialmente de una población de 100 abedules, ¿cuántos ejemplares de cada especie esperaríamos tener después de un número "grande" de generaciones?, y además, ¿cuál será la distribución ideal para alcanzar el equilibrio en el menor tiempo posible?

¹Basado en [20]

Es inmediato comprobar que el siguiente modelo matricial representa a la situación planteada,

$$\begin{pmatrix} x_1(t+1) \\ x_2(t+1) \\ x_3(t+1) \\ x_4(t+1) \end{pmatrix} \begin{pmatrix} 0,05 & 0,01 & 0 & 0 \\ 0,36 & 0,57 & 0,14 & 0,01 \\ 0,50 & 0,25 & 0,55 & 0,03 \\ 0,09 & 0,17 & 0,31 & 0,96 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{pmatrix}, \quad t = 0, 1, 2, 3 \cdots$$
(1)

donde $x_1(t)$ representa al número de abedules, $x_2(t)$ el número de tuperos negros, $x_3(t)$ el de arces rojos y $x_4(t)$ el número de hayas, en el período t. El modelo es una cadena de Markov regular, ya que todos los elementos del cuadrado de la matriz estocástica A que la representa, son no nulos.

Figura 3.18.

El vector propio asociado al autovalor $\lambda = 1$, que nos interesa es,

$$V = (0,00050824, 0,0482828, 0,0851272, 0,866082)$$

y en consecuencia, la distrución de árboles después de un "número suficiente" de períodos $\vec{X}(k)$, se calcula multiplicando $A^k \vec{X}(0)$, donde $\vec{X}(0) = (100, 0, 0, 0)^T$,

$$\begin{pmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \\ x_4(k) \end{pmatrix} \begin{pmatrix} 0,0005 & 0,0005 & 0,0005 & 0,0005 \\ 0,048 & 0,048 & 0,048 & 0,048 \\ 0,085 & 0,085 & 0,085 & 0,085 \\ 0,866 & 0,866 & 0,866 & 0,866 \end{pmatrix} \begin{pmatrix} 100 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0,05 \\ 4,8 \\ 8,5 \\ 86,6 \end{pmatrix}$$

En conclusión, a largo plazo exitirá una probabilidad del $0.5\,\%$ de que el árbol sea un abedul, un $4.8\,\%$ de que sea un tupelo negro, un $8.5\,\%$ de que sea un arce rojo y un $86.6\,\%$ de que sea una haya.

Figura 3.19. .

Simulación con $\text{Vensim}_{\mathbb{R}}$: La Figura 3.20 representa el Diagrama de Forrester correspondiente al sistema,

$$\begin{cases} x_1(t+1) - x_1(t) = -0.95x_1(t) + 0.01x_2(t) \\ x_2(t+1) - x_2(t) = 0.36x_1(t) - 0.43x_2(t) + 0.14x_3(t) + 0.01x_4(t) \\ x_3(t+1) - x_3(t) = 0.50x_1(t) + 0.17x_2(t) + 0.31x_2(t) - 0.04x_4(t) \end{cases}$$

Figura 3.20.

siendo sus ecuaciones,

```
\begin{array}{lll} \texttt{E1} = \texttt{INTEG}(\texttt{EntradaE1},100) & \texttt{E2} = \texttt{INTEG}(\texttt{EntradaE2},0) \\ \texttt{E3} = \texttt{INTEG}(\texttt{EntradaE3},0) & \texttt{E4} = \texttt{INTEG}(\texttt{EntradaE4},0) \\ \texttt{EntradaE1} = \texttt{p11} * \texttt{E1} + \texttt{p12} * \texttt{E2} \\ \texttt{EntradaE2} = \texttt{p21} * \texttt{E1} + \texttt{p22} * \texttt{E2} + \texttt{p23} * \texttt{E3} + \texttt{p24} * \texttt{E4} \\ \texttt{EntradaE3} = \texttt{p31} * \texttt{E1} + \texttt{p32} * \texttt{E2} + \texttt{p33} * \texttt{E3} + \texttt{p34} * \texttt{E4} \\ \texttt{EntradaE4} = \texttt{p41} * \texttt{E1} + \texttt{p42} * \texttt{E2} + \texttt{p43} * \texttt{E3} + \texttt{p44} * \texttt{E4} \\ \texttt{p11} = -0.95 & \texttt{p12} = 0.01 & \texttt{p21} = 0.36 & \texttt{p22} = -0.43 \\ \texttt{p23} = 0.14 & \texttt{p24} = 0.01 & \texttt{p31} = 0.5 & \texttt{p32} = 0.25 \\ \texttt{p33} = -0.45 & \texttt{p34} = 0.03 & \texttt{p41} = 0.09 & \texttt{p42} = 0.17 \\ \texttt{p43} = 0.31 & \texttt{p44} = -0.04 \end{array}
```

Una vez simulado el modelo el resultado obtenido, representado en la Figura 3.21, confirma al ya encontrado anteriormente, esto es, a largo plazo lo más probable (con un 86%) es que el arból sea una haya.

Figura 3.21 .

Bibliografía

- [1] ALLMAN E.S.; RHODES J.A. Mathematical Models in Biology. An Introduction. Cambridge University Press, (2004)
- [2] ARANA J. Seminario impartido en Palencia el 5 de abril de 2001.
- [3] BATSCHELET E.; BRAND L.; STEINER A. On the Kinetics of lead in the human body. Journal of Mathematical Biology 15-23, (1979).
- [4] BORRELLI R.; COLEMAN C.S. Ecuaciones diferenciales. Una perspectiva de modelización. Oxford University Express, Mexico, (2002).
- [5] BRITTON N.F. Essential Mathematical Biology. Springer-Verlag, London, (2003).
- [6] CAUGHLEY G. Mortality patterns in mammals. Ecology, 47, 906-918, (1966).
- [7] CAUGHLEY G.; GUNN A. Conservation Biology in Theory and Practice. Blackwell Science, Massachusetts, 147-149, (1996).
- [8] CONEJERO C.M.; MARTÍNEZ FUNES J.; NAVAS J.; ESTEBAN F.J. Aplicación de la Geometría fractal a la Ecología de Paisajes. Departamentos de Matemática y Biología Experimental, Universidad de Jaén, (2005).
- [9] DE L HAZA I.; COBO-MOLINOS J.; GARRIDO-GARCÍA M. NAVAS J.; RUEDA P.; TORRES C.; CARÚZ A.; ESTEBAN F.J. Fractal dimension of U373 astrocytoma cells in DMEM or RPMI cultures. HarFA -Harmonic and Fractal Image Analysis 94-96, (2005). http : //www.fch.vutbr.cz/lectures/imagesci/download_journal/221.Haza.pdf
- [10] ESTEBAN F.J.; NAVAS J.; JIMÉNEZ J.P.; QUESADA J.M.; GOÑI J.; VÉLEZ DE MENDIZÁBAL N.; VILLOSLADA P. System Dynamics as a tool in Stem Cells/Tissue Engineering. Histology and Histopathology, Suppl. 1, 150-151, (2005).
- [11] ESTEBAN F.J.; NAVAS J.; QUESADA J.M. Aplicaciones bioinformáticas en la docencia de Modelos Matemáticos en Biología. II Reunión de la Red de Bioninformática de Andalucía. Baeza, ESPAÑA.

- [12] FOLLARI, R. Interdisciplinaridad, espacio ideológico. Simposio sobre Alternativas Universitarias, UAM-Azcapotzalco, México, (1980).
- [13] FONTDEVILA, A. M. Introducción a la genética de poblaciones. Síntesis, Madrid 112-117,(1999).
- [14] FORESTER, J.W. Principles of Systems. SMIT Press, Cambridge, M.A.(1968).
- [15] GALACH, M. Dynamics of the tumor-inmune system competition. The effect of time delay, Int. J. Appl. Math. Comput. Sci., Vol. 13, n⁰ 3, 395-406, (2003).
- [16] GARCÍA CASTRO A.; GARRIDO PALOMERA E., ENDRINO M.I.; NAVAS J.; ESTEBAN F.J. Dimensión Fractal de Imágenes MRI-T2 en la enfermedad de Alzheimer. Departamentos de Matemáticas y Biología Experimental, Universidad de Jaén, (2005).
- [17] HANNON B.; RUTH M. Modeling Dynamic Biological Systems. Systems Springer, New York 82-86, (1997).
- [18] HANNON B.; RUTH M. Modeling Dynamic Biological Systems. Systems Springer, New York 65-68, (1997).
- [19] HARTLOVE J.; SHAFFER D.; RAGAN S. *Glucose-Insuline Model*. The Maryland Virtual High School of Science and Mathematics, (2001).
- [20] HORN H.S. *The ecology of secondary succession*. Annual Review of Ecology and Systematics 5:25-37, (1974).
- [21] LEMAIRE V.; TOBIN F.L.; GRELLER L.D.; CHO C.R.; SUVA L.J. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling, Journal of Theorical Biology, 229, 293-309, (2004).
- [22] LI B.L. Ecological Modelling, 132, 33-50, (2000).
- [23] MANDELBROT B. *The Fractal Geometry of Nature*, Eds. W.H.Freeman and Company, New York, (1983).
- [24] MARTÍN-GARCÍA J. Teoría y Ejercicios Prácticos de Dinámica de Sistemas, Barcelona, (2003).
- [25] NOWAK M.A.; MAY R.M. Virus Dynamics, Oxford University Press, New York 16-26, (2000).
- [26] MARUSIC M., BAJZER Z., FREYER J.P.; VUC-PAVLOVIC, S. Analysis of growth of multicellular tumour spheroids by mathematical models. Cell, Prolif., 27, 73-94, (1994).

- [27] NAVAS J.; QUESADA J.M.; GOÑI J.; VÉLEZ DE MENDIZÁBAL N.; VILLOSLADA P.; ESTEBAN F.J. Glioma-Immune evasion: a system dynamics approach. proceedings of the II International Conference on Computational Bioengineering, 699-710, Rodrigues et al. (Eds.), IST Press, ISBN: 972-8469-37-3, (2005).
- [28] ORTEGA H. Un modelo logístico para el crecimiento tumoral en presencia de células asesinas. Revista Mexicana de Ingeniería Biomédica, volumen XX, nº 3, 61-67, (1999).
- [29] RIOS, S. Moldelización, Alianza Universidad, Madrid, (1995).
- [30] SERRANO C.; RODRÍGUEZ I.; MARTOS D.; NAVAS J.; ESTEBAN F.J. Geometría Fractal de la Sustancia Blanca Cerebral durante el desarrollo de Esclerosis Múltiple. Departamentos de Matemáticas y Biología Experimental, Universidad de Jaén, (2005).
- [31] WARTON D.A.; GRAHAM W. An approach to the teaching of host-parasite population modelling. International Journal for Parasitology vol. 19; 451-45, (1989).
- [32] WERNER P.A.; CASWELL H. Population growth rates and age vs. stage distribution models for teasel (Dipsacus sylvestris) Huds. Ecology 58: 1103-1111, (1977).