HW \#13

Chapter 18: Ex. 1, 2, 3, 5 (a,c), page 309

Ex 1

The equations are:
(7) $\mu \frac{\partial^{2} u_{e}}{\partial x^{2}}+f\left(u_{e}\right)=0$
(8) $\frac{\partial u_{e}}{\partial x}(0)=\frac{\partial u_{e}}{\partial x}(L)=0$
$f\left(u_{e}\right)=a \cdot u_{e}, a>0$
Show that (7) and (8) can be solved with $u_{e} \neq 0$
if a can be written as $a=\mu \frac{n^{2} \pi^{2}}{L^{2}}$
$\mu \frac{\partial^{2} u_{e}}{\partial x^{2}}+f\left(u_{e}\right)=0 \Rightarrow \frac{\partial^{2} u_{e}}{\partial x^{2}}=-\frac{a}{\mu} u_{e}=c u_{e}$
Since $\mu>0$ and $a>0$ then $c=\frac{-a}{\mu}<0$
Thus for $c<0$, we have:

$$
\begin{aligned}
& u_{e}(x)=\alpha \cos \left(\sqrt{\frac{a}{\mu}} x\right)+\beta \sin \left(\sqrt{\frac{a}{\mu}} x\right) \\
& u_{e}^{\prime}(x)=\sqrt{\frac{a}{\mu}}\left(-\alpha \sin \left(\sqrt{\frac{a}{\mu}} x\right)+\beta \cos \left(\sqrt{\frac{a}{\mu}} x\right)\right) \\
& u_{e}^{\prime}(0)=\beta \sqrt{\frac{a}{\mu}}=0 \Rightarrow \beta=0 \\
& u_{e}^{\prime}(L)=-\alpha \sqrt{\frac{a}{\mu}} \sin \left(\sqrt{\frac{a}{\mu}} L\right)=0
\end{aligned}
$$

We get two cases:
if $\alpha=0$, then $u_{e}(x)=0$ (which we don't need since we're told to find a solution with $u_{e} \neq 0$)
otherwise, $\sin \left(\sqrt{\frac{a}{\mu}} L\right)=0 \Rightarrow \sqrt{\frac{a}{\mu}} L=n \pi \Rightarrow \frac{a}{\mu}=\left(\frac{n \pi}{L}\right)^{2} \Rightarrow a=\mu \frac{n^{2} \pi^{2}}{L^{2}}$ as given.

Ex. 2

$f\left(u_{e}\right)=-a u_{e} ; a>0$. The steps of the algorithm are the same as in the previous exercise.

$$
\begin{aligned}
& \frac{\partial^{2} u_{e}}{\partial x^{2}}=\frac{a}{\mu} u_{e}=c u_{e} \Rightarrow c=\frac{a}{\mu}>0(\text { since } a>0, \mu>0) \\
& u_{e}(x)=\alpha e^{\sqrt{\frac{a}{\mu}} x}+\beta e^{-\sqrt{\frac{a}{\mu}} x} \\
& u_{e}^{\prime}(x)=\sqrt{\frac{a}{\mu}}\left(\alpha e^{\sqrt{\frac{a}{\mu}} x}-\beta e^{-\sqrt{\frac{a}{\mu}} x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& u_{e}^{\prime}(0)=\sqrt{\frac{a}{\mu}}(\alpha-\beta) \text { so } \alpha=\beta \\
& u_{e}^{\prime}(L)=\sqrt{\frac{a}{\mu}} \alpha\left(e^{\sqrt{\frac{a}{\mu}} L}-e^{-\sqrt{\frac{a}{\mu}} L}\right) \Rightarrow \alpha=0 \text { and } \beta=0
\end{aligned}
$$

Thus, the only solution is $u_{e}(x)=0$

Ex. 3

Achieving this exact ration is highly unlikely. Thus you would not expect tigers to have stripes.

Ex. 5

a) $f(u)=\sin (u)$

$$
u_{e}(x)=\cos (2 x)
$$

$$
f\left(u_{e}(x)\right)=\sin (\cos (2 x))
$$

$$
f^{\prime}\left(u_{e}(x)\right)=\cos (\cos (2 x))
$$

c) $f(u)=\left(1+u^{2}\right)$
$u_{e}(x)=1+x^{2}$
$f\left(u_{e}(x)\right)=1+\left(1+x^{2}\right)^{2}$
$f^{\prime}\left(u_{e}(x)\right)=2+2 x^{2}$

