HW \#11
Ex. 1, 3 (a,c), 4(a,c,e)

Ex 1.

$u(t, x)=R \frac{1}{\sqrt{t}} e^{-\frac{x^{2}}{4 \mu t}}$.
We have the graph of $u(1, x)$ and of $u(2, x)$. We can find the value of $u(1, x)$ and $u(2, x)$ for any x.

Determine R and μ in each case:
$u(1, x)=R e^{-x^{2} / 4 \mu}$
If we take $x=0$ then $u(1,0)=e^{-0 / 4 \mu}=R$. Therefore, $R=u(1,0)$.
Now, take another value for x.
$u(1,2)=u(1,0) e^{-\frac{4}{4 \mu}} \Rightarrow u(1,2)=u(1,0) e^{-\frac{1}{\mu}}$.
$-\frac{1}{\mu}=\ln \left(\frac{u(1,2)}{u(1,0)}\right) \Rightarrow \mu=-\frac{1}{\ln \left(\frac{u(1,2)}{u(1,0)}\right)}$.
For $u(2, x)$, we do the same:
$u(2,0)=\frac{R}{\sqrt{2}} e^{0^{2} / 8 \mu} \Rightarrow R=\sqrt{2} u(2,0)$.
$u(2, \sqrt{8})=\frac{\sqrt{2} u(2,0)}{\sqrt{2}} e^{-8 / 8 \mu}=u(2,0) e^{-\frac{1}{\mu}}$.
Thus, $\mu=-\frac{\sqrt{2}}{\ln \left(\frac{u(2, \sqrt{8})}{u(2,0)}\right)}$
Ex. 3
a) See the graphs on the next page.

Figure 1: $\sin (\pi x)$ - positive on $0 \leq x \leq 1$ since the sinus function is positive in the interval $[0, \pi]$

Figure 2: $\sin (3 \pi x)$ - positive only in the intervals $0 \leq x \leq 1 / 3$ and $2 / 3 \leq x \leq 1$, but negative in between $1 / 3$ and $2 / 3$

Figure 3: $\cos (\pi x / 2)$ - positive in the interval $0 \leq x \leq 1$

c)

Figure 4: $\sin (\pi x / 4)$ - positive in the interval $0 \leq x \leq \frac{3}{2}$

Figure 5: $\sin (\pi x / 2)$ - positive in the interval $0 \leq x \leq \frac{3}{2}$

Figure 6: $\sin (3 \pi x / 4)$ - positive in the interval $0 \leq x \leq 4 / 3$, but negative in $4 / 3<x \leq 3 / 2$

Figure 7: $\sin (\pi x)$ - positive in the interval $0 \leq x \leq 1$, but negative in the interval $1<x \leq 3 / 2$

Ex. 4
a) $B(x)=\alpha e^{5 x}+\beta e^{-5 x}$.
$x=0$
$x=1$$\quad\left\{\begin{array}{l}\alpha+\beta=0 \\ \alpha e^{5}+\beta e^{-5}=0\end{array}\right.$
$\left\{\begin{array}{l}\alpha=-\beta \\ \alpha=-\beta e^{-10}\end{array}\right.$
The solution is $\alpha=\beta=0$.
c) $B(x)=\alpha \cos (\pi x)+\beta \sin (\pi x)$.
$x=0$
$x=1$$\quad\left\{\begin{array}{l}\alpha \cos 0+\beta \sin 0=0 \\ \alpha \cos \pi+\beta \sin \pi=0\end{array}\right.$
$\left\{\begin{array}{l}\alpha=0 \\ -\alpha=0\end{array}\right.$
Thus, $\alpha=0, \beta \in \mathbb{R}$
e) $B(x)=\alpha e^{3 \pi x}+\beta e^{-3 \pi x}$.
$x=0$
$x=1$$\quad\left\{\begin{array}{l}\alpha+\beta=0 \\ \alpha e^{3 \pi}+\beta e^{-3 \pi}=0\end{array}\right.$
$\left\{\begin{array}{l}\alpha=-\beta \\ \alpha=-\beta e^{-6 \pi}\end{array}\right.$
The solution is $\alpha=\beta=0$.

