Math 19. Lecture 32 Testing for Periodicity

T. Judson

Fall 2005

1 Testing for a Term with Period p

Certain phenomena may be the sum of periodic functions. For example,

$$
m(t)=m_{d}(t)+m_{m}(t)+m_{y}(t)
$$

might be a function depending on a daily cycle $\left(m_{d}\right)$, and monthly cycle $\left(m_{m}\right)$, and a yearly cycle $\left(m_{y}\right)$. Yet, $m(t)$ itself may or may not look periodic.

- Suppose that we know $m(t)$ on the interval $\left[-\tau_{0},-\tau_{0}+\tau\right]$. Here τ_{0} represents the amount of time before the present at which our data begins and τ is the time span for which we have collected data.
- We wish to know if our data $m(t)$ has a periodic component of period p. If p is much less than τ, we may be able to detect such a period.
- We must compute the following three integrals:

$$
\begin{align*}
a & \equiv \frac{1}{\tau} \int_{-\tau_{0}}^{-\tau_{0}+\tau} m(t) \cos (2 \pi t / p) d t \tag{1}\\
b & \equiv \frac{1}{\tau} \int_{-\tau_{0}}^{-\tau_{0}+\tau} m(t) \sin (2 \pi t / p) d t \tag{2}\\
\sigma & \equiv \frac{1}{\tau} \int_{-\tau_{0}}^{-\tau_{0}+\tau} m(t)^{2} d t \tag{3}
\end{align*}
$$

- With these numbers computed, we then compute

$$
\begin{equation*}
f=\frac{a^{2}+b^{2}}{\sigma} \tag{4}
\end{equation*}
$$

which has a value between 0 and 1. A significant component of the original function $m(t)$ with period p is signified by a large value for f.

2 The Power Spectrum Function

In general, we may not have an a priori guess of what the periods of the components of m might be (if there are periods). In practice, a standard approach is to compute many values of f in (4) and see which values of p give us large f.

3 Fourier Coefficients

It is customary to change variables from the period p to the frequency $\nu=$ $1 / p$. Then (1) and (2) become

$$
\begin{align*}
a & \equiv \frac{1}{\tau} \int_{-\tau_{0}}^{-\tau_{0}+\tau} m(t) \cos (2 \pi \nu t) d t \tag{5}\\
b & \equiv \frac{1}{\tau} \int_{-\tau_{0}}^{-\tau_{0}+\tau} m(t) \sin (2 \pi \nu t) d t \tag{6}
\end{align*}
$$

In this case, f becomes a function of ν :

$$
f(\nu)=\frac{a(\nu)^{2}+b(\nu)^{2}}{\sigma}
$$

This function is called the power spectral density function.

4 An Example

Suppose that

$$
m(t)=\alpha \cos (2 \pi t / q)+\beta \sin (2 \pi t / q)
$$

is periodic with period q. We compute the Fourier coefficients and the power spectral density function.

5 Trigonometric Integrals

Fourier coefficients can often be computed in exact form. We need the following indefinite integrals. If $A \neq B$, then

- $\int \cos (A t) \cos (B t) d t=\frac{\sin ((A-B) t)}{2(A-B)}+\frac{\sin ((A+B) t)}{2(A+B)}$
- $\int \sin (A t) \cos (B t) d t=\frac{\cos ((A-B) t)}{2(A-B)}-\frac{\cos ((A+B) t)}{2(A+B)}$
- $\int \sin (A t) \sin (B t) d t=\frac{\sin ((A-B) t)}{2(A-B)}-\frac{\sin ((A+B) t)}{2(A+B)}$

If $A=B$, then

- $\int \cos ^{2}(A t) d t=\frac{t}{2}+\frac{1}{4 A} \sin (2 A t)$
- $\int \sin (A t) \cos (A t) d t=-\frac{1}{4 A} \cos (2 A t)$
- $\int \sin ^{2}(A t) d t=\frac{t}{2}-\frac{1}{4 A} \sin (2 A t)$

6 Example

Suppose that $m(t)=e^{-|t|}$ is defined on $(-\infty, \infty)$.

$$
\begin{aligned}
a(\nu) & =\frac{1}{\tau} \int_{-\infty}^{\infty} e^{-|t|} \cos (2 \pi \nu t) d t \\
& =\frac{2}{\tau} \int_{0}^{\infty} e^{-t} \cos (2 \pi \nu t) d t \\
& =\frac{2}{\tau}\left[\frac{2 \pi \nu e^{-t} \sin (2 \pi \nu t)-e^{-t} \cos (2 \pi \nu t)}{1+4 \pi^{2} \nu^{2}}\right]_{0}^{\infty} \\
& =\frac{2}{\tau\left(1+4 \pi^{2} \nu^{2}\right)}
\end{aligned}
$$

$$
b(\nu)=\frac{1}{\tau} \int_{-\infty}^{\infty} e^{-|t|} \sin (2 \pi \nu t) d t=0
$$

$$
\begin{gathered}
\sigma=\frac{1}{\tau} \int_{-\infty}^{\infty} e^{-2|t|} d t=\frac{2}{\tau} \int_{0}^{\infty} e^{-2 t} d t=\frac{2}{\tau}\left[-\frac{e^{-2 t}}{2}\right]_{0}^{\infty}=\frac{1}{\tau} . \\
f(\nu)=\frac{a(\nu)^{2}+b(\nu)^{2}}{\sigma}=\frac{4}{\tau\left(1+4 \pi^{2} \nu^{2}\right)^{2}}
\end{gathered}
$$

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 27.

