Math 19. Lecture 30
 Estimating Elapsed Time

T. Judson

Fall 2005

1 Estimating Time

Suppose that

$$
\begin{equation*}
\frac{d s}{d t}=f(s) \tag{1}
\end{equation*}
$$

where $s(0)=s_{0}$. If $s_{0} \leq s \leq s_{1}$ and $f(s)>0$, we wish to estimate how long it takes to reach s_{1}.

- Step 1. Let $t=t_{1}$ be the time where s first takes on the value s_{1}. Suppose that
- $f_{\max }$ be the maximum value of $f(s)$ on $\left[s_{0}, s_{1}\right]$.
- $f_{\text {min }}$ be the minimum value of $f(s)$ on $\left[s_{0}, s_{1}\right]$.
- Step 2. From equation (1),

$$
\begin{equation*}
f_{\min } \leq \frac{d s}{d t} \leq f_{\max } \tag{2}
\end{equation*}
$$

on $\left[s_{0}, s_{1}\right]$.

- Step 3. Integrating (2) from 0 to t_{1} and using the Fundamental Theorem of Calculus, we have

$$
f_{\min } \cdot t_{1} \leq \int_{0}^{t_{1}} \frac{d s}{d t} d t \leq f_{\max } \cdot t_{1}
$$

or

$$
f_{\min } \cdot t_{1} \leq s\left(t_{1}\right)-s(0)=s_{1}-s_{0} \leq f_{\max } \cdot t_{1}
$$

- Step 4. Therefore,

$$
\frac{s_{1}-s_{0}}{f_{\max }} \leq t_{1} \leq \frac{s_{1}-s_{0}}{f_{\min }}
$$

2 Some Examples

- Let

$$
\frac{d x}{d t}=2+\sin (\pi x)
$$

with initial condition $x(0)=0$. We wish to find upper and lower bounds for t when $x(t)=1$. We can replace $\sin \pi x$ by 1 to get a maximum for $2+\sin (\pi x)$ and by 0 to get a minimum for $2+\sin (\pi x)$. Therefore,

$$
\frac{1}{3} \leq t \leq \frac{1}{2}
$$

- Let

$$
\frac{d x}{d t}=2 x^{4}-x+2
$$

with initial condition $x(0)=0$. We wish to find upper and lower bounds for t when $x(t)=1$. The function $2 x^{4}-x+2$ has a critical point at $x=1 / 2$. Since

$$
\begin{aligned}
f(0) & =2 \\
f(1 / 2) & =13 / 8 \\
f(1) & =3,
\end{aligned}
$$

we know that

$$
\frac{1}{3} \leq t \leq \frac{8}{13}
$$

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 25.

