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1 Modeling the Motion of the Heart

Suppose that we have a system of equations with a periodic solution. What
can we say about the speed of the movement? For example, suppose that
we look at a muscle controlling a heart valve. The muscle spends most of its
time moving slightly or very slowly near one of two positions (the value is in
the open position or the closed position). However, there is a rapid motion
whenever the valve is opened or closed. We can use the system

dx

dt
= −

x3

3
+ x + α (1)

dα

dt
= −ǫx, (2)

as a simple model, where

x(t) = the position of the muscle at time t,

α(t) = the concentration of some chemical stimulus

above or below a fixed concentration at time t.

Note that the x variable will be bounded. A heart valve can only move so
far. The inverse of the parameter ǫ > 0 will be used to estimate the amount
of time that x spends at one or the other rest positions.1

1This equation is called van der Pol’s equation and occurs in circuit theory.
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2 Fast and Slow Subsystems

In equations (1) and (2), we have a slow moving system interacting with
a fast moving system. If ǫ > 0 is small and x is bounded, let us say that
|x| < 10, then dα/dt is relatively small and cannot change quickly. Therefore,
the slow moving system is

dα

dt
= −ǫx.

In this case, the speed at which α changes is never more than 10ǫ. On the
other hand, the equation

dx

dt
= −

x3

3
+ x + α,

has no small number ǫ, and, thus, its solutions can move relatively quickly.
In fact,

dx

dt
= x

is exponential. In this case, the speed at which x can change can be relatively
high.

3 What’s Going On

Let us see what happens to equation

dx

dt
= −

x3

3
+ x + α,

as we change α.

• First, suppose that α = 2/3. Then x = 2 is a stable equilibrium for

dx

dt
= −

x3

3
+ x +

2

3
.

• However, α will not stay at 2/3, since it changes according to

dα

dt
= −ǫx.

This equation tells us that α will decrease slowly.
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• As α decreases (but stays above −2/3), the equation

dx

dt
= −

x3

3
+ x + α (3)

has a stable equilibrium point, say x
α
, for some positive x. This equi-

librium point moves slowly to the left since α changes slowly.

• At α = −2/3, the equilibrium point becomes unstable.

• When α(t) < −2/3, the equation (3) no longer even has a positive
equilibrium point.

• As the positive equilibrium point becomes unstable and disappears, x(t)
must travel from where it is nearly 1 to the remaining stable equilibrium
point, where x < −2. The motion is governed by

dx

dt
= −

x3

3
+ x + α

and so it must occur at a speed governed by this equation. Since the
equation does not include the parameter ǫ, the transition from where
x ≈ 1 to where x < −2 should occur much faster than it took for x to
decrease from 2 to 1.

• When x has switched to nearly −2, then

dα

dt
= −ǫx.

tells us that α must begin increasing again (dα/dt > 0 in this case).
This will be a slow increase since ǫ is small. The increase will continue
as long as α < 2/3.

• As α reaches 2/3, the point x = −1 is no longer a stable equilibrium
point. Note that this is the mirror image of what happened before

4 Existence of a Cycle

We can use the Poincaré-Bendixson Theorem to show that we have a periodic
solution. The origin is a repelling equilibrium point, and we can find a basin
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of attraction bounded by

α = x + 6

α = x − 6

x = 3

x = −3

α = 6

α = −6.

5 Fast and Slow

We wish to estimate the amount of time a periodic solution stays in the
various parts of it orbits in the (x, α)-plane. If ǫ > 0 is small, we can show
that it will take a very long time for α to move from 0 to −1/3. On the other
hand, x moves from 1/2 to −3/2 relatively quickly when α < −1/2.
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