Math 19. Lecture 27 Traveling Wave Velocities

T. Judson

Fall 2005

1 The Model

We are looking for a solution $u(t, x)$ to the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+r u(1-u) \tag{1}
\end{equation*}
$$

where $r>0$. In addition, we require that the following conditions be obeyed.

1. $0 \leq u \leq 1$,
2. $u(t, x) \rightarrow 1$ as $x \rightarrow-\infty$,
3. $u(t, x) \rightarrow 0$ as $x \rightarrow \infty$.

We examined traveling wave solutions of the form

$$
u(t, x)=f(x-c t)
$$

where $c>0$. The constant c is the speed at which the wave described by f travels from left to right along the x-axis. If $u(t, x)$ satisfies the above equations, then $f(s)$ must obey

$$
\begin{equation*}
-c \frac{d f}{d s}=\frac{d^{2} f}{d s^{2}}+r f(1-f) \tag{2}
\end{equation*}
$$

where

1. $0 \leq f \leq 1$,
2. $f(s) \rightarrow 1$ as $s \rightarrow-\infty$,
3. $f(s) \rightarrow 0$ as $s \rightarrow \infty$.

We can turn this second-order differential equation such as (2) into a firstorder system:

$$
\begin{align*}
& \frac{d f}{d s}=p \tag{3}\\
& \frac{d p}{d s}=-c p-r f(1-f) \tag{4}
\end{align*}
$$

We showed by phase plane analysis that this solution is solvable provided that $c^{2}>4 r$.

2 The Problem

According to the preceding analysis, there are traveling wave solutions to (1) that cross country at arbitrarily high speeds. This seems contrary to our intuition.

3 The Solution

Consider the function $d f / d s=p(s)$. Suppose that $p(s)$ has a maximum at some point, say at $s=s_{0}$. Then

$$
\left.\frac{d p}{d s}\right|_{s=s_{0}}=0
$$

Therefore, we can conclude from (4) that

$$
\begin{equation*}
c p\left(s_{0}\right)=-r f\left(s_{0}\right)\left(1-f\left(s_{0}\right)\right) \tag{5}
\end{equation*}
$$

Since $0 \leq f \leq 1$, we know that $d f / d s=p \leq 0$. Now let s_{1} be the point where $p(s)$ is the most negative. Then

$$
\left.\frac{d p}{d s}\right|_{s=s_{1}}=0
$$

and

$$
\begin{equation*}
-c p\left(s_{1}\right)=r f\left(s_{1}\right)\left(1-f\left(s_{1}\right)\right) \tag{6}
\end{equation*}
$$

Now, $0 \leq f\left(s_{1}\right) \leq 1$, which means that $f\left(s_{1}\right)\left(1-f\left(s_{1}\right)\right) \leq 1 / 4$, since the parabola $y=x(1-x)$ has its maximum at $x=1 / 2$, where $y=1 / 4$. Therefore,

$$
\begin{equation*}
\max \left|\frac{d f}{d s}\right|=-p\left(s_{1}\right) \leq \frac{r}{4 c} . \tag{7}
\end{equation*}
$$

This inequality needs some interpretation. It says that solutions to (2) with large c must have a small slope everywhere.

Thus, the velocity of the wave can be bounded everywhere if we know the maximum absolute value of the slope. That is, a high speed wave will have a very slow fall off in x, but a slow traveling wave will have a large fall off.

4 The Mouse/Virus Infection

In context of the mouse/virus problem, the maximum slope, as a function of x, of the fraction of the mice infected at time zero is the number

$$
\max \left|\frac{\partial}{\partial x} u(0, x)\right| .
$$

If we can determine this number from field data, then with a knowledge of the coefficient r, we can predict an upper bound to the speed at which the infection travels across country.

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 22.

