Math 19. Lecture 24
 Stability Criterion (II)

T. Judson

Fall 2005

1 Linear Stability Criterion

Let u_{e} be an equilibrium solution to

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}+f(u) \tag{1}\\
\frac{\partial}{\partial x} u(t, 0)=\frac{\partial}{\partial x} u(t, L)=0 . \tag{2}
\end{gather*}
$$

The solution $u_{e}(x)$ is a stable solution to

$$
\begin{gather*}
\mu \frac{d^{2} u_{e}}{d x^{2}}+f\left(u_{e}\right)=0 \tag{3}\\
\frac{d}{d x} u_{e}(0)=\frac{d}{d x} u_{e}(L)=0 \tag{4}
\end{gather*}
$$

if and only if there is no pair (g, λ), where $g(x)$ is some function that is not identically zero for $0 \leq x \leq L$, where $\lambda \in \mathbb{R}$, and where the following constraints are satisfied.

- $\lambda \geq 0$
- $\lambda g=\mu \frac{d^{2}}{d x^{2}}+z(x) g$
- $\left.\frac{d g}{d x}\right|_{x=0}=\left.\frac{d g}{d x}\right|_{x=L}=0$

A solution is unstable if there is even one such pair (g, λ) that obeys the above conditions.

2 Important Remarks about Stability

- For a specific u_{e} and $f(u)$ (hence $z(x)$), we may or may not be able to find such g and λ.
- If w is a solution to

$$
\begin{gather*}
\frac{\partial w}{\partial t}=\mu \frac{\partial^{2} w}{\partial x^{2}}+z(x) w \tag{5}\\
\frac{\partial}{\partial x} w(t, 0)=\frac{\partial}{\partial x} w(t, L)=0 . \tag{6}
\end{gather*}
$$

and if $|w|$ is very small at all points x, then the function of space and time, $u_{e}(x)+w(t, x)$, is an approximate solution to (1) and (2).

- Conversely, if $u(t, x)=u_{e}(x)+w(t, x)$ is a solution to (1) and (2) for small $|w|$, then w will be an approximate solution for (5) and (6).
- If w solution to (5) and (6) such that $|w|$ is very small to begin with for all x but grows as $t \rightarrow \infty$ for some x, then (1) and (2) will have a solution that is close to $u_{e}(x)$ to start with but departs from $u_{e}(x)$ as $t \rightarrow \infty$. This solution can be approximated by $u(t, x)=u_{e}(x)+w(t, x)$. Conversely, if (1) and (2) have a solution of the form $u(t, x)=u_{e}(x)+$ $w(t, x)$ that starts at $t=0$ for small $|w|$ at all x, then (5) and (6) will have a solution that starts small and grows with time. This solution can be approximated by w when t is small.
- If all solutions w to (5) and (6) shrink in absolute value as $t \rightarrow \infty$, then all solutions to (1) and (2) that start near enough to the equilibrium solution $u_{e}(x)$ at $t=0$ will approach $u_{e}(x)$ at all x as $t \rightarrow \infty$.

3 Boundary Conditions

The boundary condtions must match. Let u_{e} be an equilibrium solution to

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}+f(u) \tag{7}\\
u(t, 0)=u(t, L)=0 \tag{8}
\end{gather*}
$$

The solution $u_{e}(x)$ is a stable solution to

$$
\begin{array}{r}
\mu \frac{d^{2} u_{e}}{d x^{2}}+f\left(u_{e}\right)=0 \\
u_{e}(0)=u_{e}(L)=0
\end{array}
$$

if and only if there is no pair (g, λ), where $g(x)$ is some function that is not identically zero for $0 \leq x \leq L$, where $\lambda \in \mathbb{R}$, and where the following constraints are satisfied.

- $\lambda \geq 0$
- $\lambda g=\mu \frac{d^{2}}{d x^{2}}+z(x) g$
- $\left.\frac{d g}{d x}\right|_{x=0}=\left.\frac{d g}{d x}\right|_{x=L}=0$

A solution is unstable if there is even one such pair (g, λ) that obeys the above conditions.

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 19.
- "Direct and Continuous Assessment by Cells of Their Position in a Morphogen Gradient," pp. 296-300.
- "Activin Signalling and Response to a Morphogen Gradient," pp. 300309.

