Math 19. Lecture 23
 Stability Criterion (I)

T. Judson

Fall 2005

1 Linear Stability Criterion

Let u_{e} be an equilibrium solution to

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}+f(u) \tag{1}\\
\frac{\partial}{\partial x} u(t, 0)=\frac{\partial}{\partial x} u(t, L)=0 . \tag{2}
\end{gather*}
$$

The solution $u_{e}(x)$ is a stable solution to

$$
\begin{gathered}
\mu \frac{d^{2} u_{e}}{d x^{2}}+f\left(u_{e}\right)=0 \\
\frac{d}{d x} u_{e}(0)=\frac{d}{d x} u_{e}(L)=0
\end{gathered}
$$

if and only if there is no pair (g, λ), where $g(x)$ is some function that is not identically zero for $0 \leq x \leq L$, where $\lambda \in \mathbb{R}$, and where the following constraints are satisfied.

- $\lambda \geq 0$
- $\lambda g=\mu \frac{d^{2}}{d x^{2}}+z(x) g$
- $\left.\frac{d g}{d x}\right|_{x=0}=\left.\frac{d g}{d x}\right|_{x=L}=0$

A solution is unstable if there is even one such pair (g, λ) that obeys the above conditions.

2 Some Heuristic Justifications

1. The solutions to (1) or (2) that are close to the equilibrium solution $u_{e}(x)$ can be written as

$$
u(t, x)=u_{e}(x)+w(t, x)
$$

where $|w|$ is small when near x and t under consideration.
2. If $|w|$ is small, then

$$
\left.\frac{f\left(u_{e}+w\right)-f\left(u_{e}\right)}{w} \approx \frac{d f}{d u}\right|_{u=u_{e}}=z(x)
$$

So we can replace $f\left(u_{e}(x)+w(x)\right)$ by

$$
\begin{equation*}
f\left(u_{e}\right)+\left.\frac{d f}{d u}\right|_{u=u_{e}} w=f\left(u_{e}\right)+z(x) w . \tag{3}
\end{equation*}
$$

Substituting this replacement expression into (1), we get

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(u_{e}+w\right)=\mu \frac{\partial^{2}}{\partial x^{2}}\left(u_{e}+w\right)+f\left(u_{e}\right)+z(x) w \tag{4}
\end{equation*}
$$

There is nothing mysterious going on here. We are just estimating $f(u)$ with its first-order Taylor series representation.
3. Since u_{e} is independent of time and obeys (3), equation (4) becomes

$$
\begin{equation*}
\frac{\partial w}{\partial t}=\mu \frac{\partial^{2} w}{\partial x^{2}}+z(x) w \tag{5}
\end{equation*}
$$

The boundary conditions for w are now

$$
\begin{equation*}
\frac{\partial w}{\partial x}(t, 0)=\frac{\partial w}{\partial x}(t, L)=0 \tag{6}
\end{equation*}
$$

To write

$$
z(x)=\left.\frac{d f}{d u}\right|_{u=u_{e}}
$$

we have to know u_{e}. Equation (5) is much simpler than equation (1), because w appears as a first power and not as some potentially complicated function like $f\left(u_{e}+w\right)$.
4. We can now solve (5) and (6) using the separation of variables technique. Let $w(t, x)=A(t) g(x)$. Then

$$
g(x) \frac{d A}{d t}=\mu A(t) \frac{d^{2} g}{d x^{2}}+A(t) g(x) z(x)
$$

or

$$
\frac{1}{A} \frac{d A}{d t}=\frac{\mu}{g} \frac{d^{2} g}{d x^{2}}+z(x)
$$

This gives us two equations

$$
\begin{align*}
\frac{d A}{d t} & =\lambda A \tag{7}\\
\lambda g(x) & =\mu \frac{d^{2} g}{d x^{2}}+g(x) z(x) \tag{8}
\end{align*}
$$

The solution to (7) is $A=A(0) e^{\lambda t}$. If there exists a $\lambda \geq 0$ and a $g(x) \not \equiv 0$ such that

$$
\left.\frac{d g}{d x}\right|_{x=0}=\left.\frac{d g}{d x}\right|_{x=L}=0
$$

then there exists a solution $w(t, x)=A(0) e^{\lambda t} g(x)$ such that $|w| \nrightarrow 0$ as $t \rightarrow \infty$. Therefore, we have an unstable solution.

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 19.
- "Direct and Continuous Assessment by Cells of Their Position in a Morphogen Gradient," pp. 296-300.
- "Activin Signalling and Response to a Morphogen Gradient," pp. 300309.

