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1 The Model

• Suppose that the yellow color of tiger hair is caused by a high concen-
tration of a particular protein in certain cells. the black color is caused
by low concentration of the same protein in other cells.

• Suppose that the chemical concentration in a tiger embryo is described
by a function

u = u(t, x)

at time t, where x is the only spatial coordinate.

0 ≤ x ≤ L

t ≥ 0

• The chemical moves in a random way through the embryo.

• We can model this with the reaction-diffusion equation

∂u

∂t
= µ

∂2u

∂x2
︸ ︷︷ ︸

diffusion term

+ f(u),
︸ ︷︷ ︸

reaction term

where, for example,

f(u) = r0 − r1u, where r0 > 0,

f(u) = r1u − r2u
2, where r1, r2 > 0.
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• In practice we choose f such that dv/dt = f(v) for a function v(t) that
describes the amount of the protein as a function of time in a single
isolated cell. We can then decide f by experiments on isolated cells.

• Important Assumption. The protein in question is spread by random
motion.

2 Boundary Conditions

How do derive the equation and how do we impose boundary conditions upon

u at x = 0 and x = L? Recall how we derived the advection equation. We
will do something similar here.

• Consider the strip a ≤ x ≤ a + ∆x. The total amount of the protein
in this is strip is given by

m(t, a) =

∫
a+∆x

a

u(t, x) dx,

and m(t, a) ≈ u(t, a)∆x when ∆x is small.

• If

q(t, a) = (rate at which molecules at x = a pass from left to right)

−(rate at which molecules at x = a pass from right to left),

then

∆x
∂u

∂t
≈

∂m

∂t
= q(t, a) − q(t, a + ∆x) +

∫
a+∆x

a

f(u(t, s)) ds

︸ ︷︷ ︸

produced by the reaction

.

or
∂u

∂t
≈ −

q(t, a + ∆x) − q(t, a)

∆x
+

1

∆x

∫
a+∆x

a

f(u(t, s)) ds.

As ∆x → 0, we obtain the equation

∂u

∂t
= −

∂q

∂x
+ f(u).
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• Since we assume that the protein moves randomly,

q(t, a) = −µ
∂u

∂x
.

Thus,
∂u

∂t
= µ

∂2u

∂x2
+ f(u).

• At x = 0 and x = L, there is no chemical passing from right to left or
from left to right. Thus,

q(t, 0) = q(t, L) = 0

or
∂

∂x
u(t, 0) =

∂

∂x
u(t, L) = 0.

3 Equilibrium Solutions

Our goal is to find solutions to

∂u

∂t
= µ

∂2u

∂x2
+ f(u)

that are stable with respect to time (∂u/∂t = 0) subject to the boundary
conditions

∂

∂x
u(t, 0) =

∂

∂x
u(t, L) = 0.

• Our interest in the equilibrium solution implies that the stripe pattern,
once set, does not change over time.

• If u is only a function of x; i.e., u(t, x) = u
e
(x), then ∂u/∂t = 0, and

u
e
(x) must satisfy

µ
d2u

e

dx2
+ f(u

e
) = 0

d

dx
u

e
(0) =

d

dx
u

e
(L) = 0.

• From now on, think of u
e

instead of u.

3



4 Stability

Suppose that there is a solution u
e
(x) for some f , say f(u) = r1u − r2u

2,
where r1, r2 > 0. Is there a reasonable chance of seeing this solution in
nature?

Suppose that u
e
(x) is a solution to

µ
d2u

e

dx2
+ f(u

e
) = 0

subject to the boundary conditions. Let w(x) be a small perturbation of
u

e
(x) at t = 0, and set

u(0, x) = u
e
(x) + w(x)

and move forward in time to obtain a solution to

∂u

∂t
= µ

∂2u

∂x2
+ f(u) (1)

∂

∂x
u(t, 0) =

∂

∂x
u(t, L) = 0. (2)

that is equal to u
e
(x) + w(x) at t = 0

Condition for Stability. If w(x) is small enough, then the resulting solu-
tion u(t, x) to (1) and (2) that has the property u(0, x) = u

e
(x) + w(x) has

the property that at every x, the values of u(t, x) → u
e
(x) as t → ∞.

Condition for Instability. A solution is unstable if there is an arbitrarily
small (but not identically zero) perturbation w(x) such that u(t, x) does not
approach u

e
(x) for at least one x as t → ∞.
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