Math 19. Lecture 21
 Pattern Formation (I)

T. Judson

Fall 2005

1 The Model

- Suppose that the yellow color of tiger hair is caused by a high concentration of a particular protein in certain cells. the black color is caused by low concentration of the same protein in other cells.
- Suppose that the chemical concentration in a tiger embryo is described by a function

$$
u=u(t, x)
$$

at time t, where x is the only spatial coordinate.

$$
\begin{gathered}
0 \leq x \leq L \\
t \geq 0
\end{gathered}
$$

- The chemical moves in a random way through the embryo.
- We can model this with the reaction-diffusion equation

$$
\frac{\partial u}{\partial t}=\underbrace{\mu \frac{\partial^{2} u}{\partial x^{2}}}_{\text {diffusion term }}+\underbrace{f(u)}_{\text {reaction term }}
$$

where, for example,

$$
\begin{aligned}
& f(u)=r_{0}-r_{1} u, \text { where } r_{0}>0, \\
& f(u)=r_{1} u-r_{2} u^{2}, \text { where } r_{1}, r_{2}>0 .
\end{aligned}
$$

- In practice we choose f such that $d v / d t=f(v)$ for a function $v(t)$ that describes the amount of the protein as a function of time in a single isolated cell. We can then decide f by experiments on isolated cells.
- Important Assumption. The protein in question is spread by random motion.

2 Boundary Conditions

How do derive the equation and how do we impose boundary conditions upon u at $x=0$ and $x=L$? Recall how we derived the advection equation. We will do something similar here.

- Consider the strip $a \leq x \leq a+\Delta x$. The total amount of the protein in this is strip is given by

$$
m(t, a)=\int_{a}^{a+\Delta x} u(t, x) d x
$$

and $m(t, a) \approx u(t, a) \Delta x$ when Δx is small.

- If

$$
q(t, a)=\text { (rate at which molecules at } x=a \text { pass from left to right) }
$$ -(rate at which molecules at $x=a$ pass from right to left),

then

$$
\Delta x \frac{\partial u}{\partial t} \approx \frac{\partial m}{\partial t}=q(t, a)-q(t, a+\Delta x)+\underbrace{\int_{a}^{a+\Delta x} f(u(t, s)) d s}_{\text {produced by the reaction }} .
$$

or

$$
\frac{\partial u}{\partial t} \approx-\frac{q(t, a+\Delta x)-q(t, a)}{\Delta x}+\frac{1}{\Delta x} \int_{a}^{a+\Delta x} f(u(t, s)) d s
$$

As $\Delta x \rightarrow 0$, we obtain the equation

$$
\frac{\partial u}{\partial t}=-\frac{\partial q}{\partial x}+f(u) .
$$

- Since we assume that the protein moves randomly,

$$
q(t, a)=-\mu \frac{\partial u}{\partial x}
$$

Thus,

$$
\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}+f(u)
$$

- At $x=0$ and $x=L$, there is no chemical passing from right to left or from left to right. Thus,

$$
q(t, 0)=q(t, L)=0
$$

or

$$
\frac{\partial}{\partial x} u(t, 0)=\frac{\partial}{\partial x} u(t, L)=0 .
$$

3 Equilibrium Solutions

Our goal is to find solutions to

$$
\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}+f(u)
$$

that are stable with respect to time $(\partial u / \partial t=0)$ subject to the boundary conditions

$$
\frac{\partial}{\partial x} u(t, 0)=\frac{\partial}{\partial x} u(t, L)=0 .
$$

- Our interest in the equilibrium solution implies that the stripe pattern, once set, does not change over time.
- If u is only a function of x; i.e., $u(t, x)=u_{e}(x)$, then $\partial u / \partial t=0$, and $u_{e}(x)$ must satisfy

$$
\begin{gathered}
\mu \frac{d^{2} u_{e}}{d x^{2}}+f\left(u_{e}\right)=0 \\
\frac{d}{d x} u_{e}(0)=\frac{d}{d x} u_{e}(L)=0 .
\end{gathered}
$$

- From now on, think of u_{e} instead of u.

$4 \quad$ Stability

Suppose that there is a solution $u_{e}(x)$ for some f, say $f(u)=r_{1} u-r_{2} u^{2}$, where $r_{1}, r_{2}>0$. Is there a reasonable chance of seeing this solution in nature?

Suppose that $u_{e}(x)$ is a solution to

$$
\mu \frac{d^{2} u_{e}}{d x^{2}}+f\left(u_{e}\right)=0
$$

subject to the boundary conditions. Let $w(x)$ be a small perturbation of $u_{e}(x)$ at $t=0$, and set

$$
u(0, x)=u_{e}(x)+w(x)
$$

and move forward in time to obtain a solution to

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}+f(u) \tag{1}\\
\frac{\partial}{\partial x} u(t, 0)=\frac{\partial}{\partial x} u(t, L)=0 . \tag{2}
\end{gather*}
$$

that is equal to $u_{e}(x)+w(x)$ at $t=0$
Condition for Stability. If $w(x)$ is small enough, then the resulting solution $u(t, x)$ to (1) and (2) that has the property $u(0, x)=u_{e}(x)+w(x)$ has the property that at every x, the values of $u(t, x) \rightarrow u_{e}(x)$ as $t \rightarrow \infty$.

Condition for Instability. A solution is unstable if there is an arbitrarily small (but not identically zero) perturbation $w(x)$ such that $u(t, x)$ does not approach $u_{e}(x)$ for at least one x as $t \rightarrow \infty$.

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 18.
- "Dynanamics of Stripe Formation," pp. 280-282.
- "A Reaction-Diffusion Wave on the Skin of the Marine Angelfish," pp. 282-286.
- "Letters to Nature," pp. 286-288.

