Math 19. Lecture 20 Separation of Variables (II)

T. Judson

Fall 2005

1 Modeling the Density of Protein

It is known that the concentration of certain proteins at any cell in an embryo determines whether or not a particular gene is expressed in that cell. We will consider a cell model of an embryo where

$$
u(t, x, y)
$$

is the density of protein at time t and position (x, y). We will consider our embryo to be square, $[0, L] \times[0, L]$, where Protein is produced along the left-hand edge according to

$$
u(t, 0, y)=\sin \left(\frac{\pi y}{L}\right)
$$

Observe that this function is zero at $(0,0)$ and $(0, L)$. Assume also that

$$
\begin{aligned}
u(t, x, 0) & =0 \\
u(t, x, L) & =0 \\
u(t, L, y) & =0
\end{aligned}
$$

The protein will diffuse according to the equation

$$
\frac{\partial u}{\partial t}=\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)-r u .
$$

Eventually, we will reach a steady-state

$$
\begin{equation*}
\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)-r u=0 \tag{1}
\end{equation*}
$$

2 Separation of Variables

If

$$
u(x, y)=A(x) B(y)
$$

then equation (1) becomes

$$
\mu\left(A^{\prime \prime}(x) B(y)+A(x) B^{\prime \prime}(y)\right)-A(x) B(y)=0
$$

or

$$
\mu\left(\frac{A^{\prime \prime}(x)}{A(x)}+\frac{B^{\prime \prime}(y)}{B(y)}\right)=r .
$$

The first term of the expression inside the parentheses of the last equation is a function of x and the second term is a function of y. Since x and y are independent variables and the equation is equal to a constant r, both of these terms must be constant. Therefore, we can assume that

$$
\begin{align*}
\frac{1}{A} A^{\prime \prime} & =\frac{r}{\mu}-\lambda \tag{2}\\
\frac{1}{B} B^{\prime \prime} & =\lambda \tag{3}
\end{align*}
$$

The boundary conditions now become

$$
\begin{aligned}
A(0) B(y) & =\sin \left(\frac{\pi y}{L}\right) \\
A(L) B(y) & =0 \\
A(x) B(0) & =0 \\
A(x) B(L) & =0
\end{aligned}
$$

We first solve $B^{\prime \prime}=\lambda B$. There are three cases.

- If $\lambda>0$, then

$$
B=\alpha e^{\sqrt{\lambda} y}+\beta e^{-\sqrt{\lambda} y} .
$$

- If $\lambda=0$, then

$$
B=\alpha+\beta y
$$

- If $\lambda<0$, then

$$
B=\alpha \cos \sqrt{|\lambda|} y+\beta \cos \sqrt{|\lambda|} y
$$

Applying the boundary condition $A(0) B(y)=\sin \pi / L$, the only consistent case occurs when $\lambda<0$. If we let $\alpha=0$ and $\beta=1$, then

$$
A(0) B(y)=\sin \left(\frac{\pi y}{L}\right)
$$

and $\lambda=-\pi^{2} / L^{2}$.
Equation (2) now becomes

$$
\frac{d^{2} A}{d x^{2}}=\left(\frac{r}{\mu}+\frac{\pi^{2}}{L^{2}}\right) A
$$

To simplify matters, we will let

$$
c=\frac{r}{\mu}+\frac{\pi^{2}}{L^{2}} .
$$

Thus, we need to solve the equation

$$
\frac{d^{2} A}{d x^{2}}=c A
$$

In this case, $c>0$. so the solutions must be of the form

$$
A(x)=\alpha e^{\sqrt{c} x}+\beta e^{-\sqrt{c} x} .
$$

Since

$$
A(0) B(y)=\sin \left(\frac{\pi y}{L}\right)
$$

$\alpha+\beta=1$. Since $A(L) B(y)=0$,

$$
\alpha e^{\sqrt{c} L}+\beta e^{-\sqrt{c} L} .
$$

Thus,

$$
\begin{aligned}
\alpha & =-\frac{1}{e^{2 \sqrt{c} L}-1} \\
\beta & =\frac{e^{2 \sqrt{c} L}}{e^{2 \sqrt{c} L}-1}
\end{aligned}
$$

Thus,

$$
u(x, y)=\frac{-e^{\sqrt{c} x}+e^{2 \sqrt{c} L} e^{-\sqrt{c} x}}{e^{2 \sqrt{c} L}-1} \sin \left(\frac{\pi y}{L}\right)
$$

where

$$
c=\frac{r}{\mu}+\frac{\pi^{2}}{L^{2}}
$$

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 17.

