Math 19. Lecture 19 Separation of Variables (I)

T. Judson

Fall 2005

1 Solutions to the ODE $B^{\prime \prime}=c B$

We will divide the solution of $B^{\prime \prime}=c B$, depending on the sign of c.

- Case 1: $c=0$. If $B^{\prime \prime}=0$, then B must be a linear function. Therefore,

$$
B(x)=\alpha+\beta x .
$$

- Case 2: $c>0$. If $B^{\prime \prime}=c B$ and $c>0$, then we can let $\lambda^{2}=c$. Thus, we must solve the equation

$$
B^{\prime \prime}-\lambda^{2} B=0 .
$$

Let us assume that our solution has the form $B(x)=e^{r x}$. Then

$$
\frac{d^{2}}{d x^{2}} B(x)-\lambda^{2} B(x)=r^{2} e^{r x}-\lambda^{2} e^{r x}=\left(r^{2}-\lambda^{2}\right) e^{r x}
$$

Since $e^{r x}$ is never zero,

$$
r^{2}-\lambda^{2}=(r-\lambda)(r+\lambda)=0
$$

$r= \pm \lambda$. Thus, we have solutions

$$
B(x)=e^{\lambda x} \text { and } B(x)=e^{-\lambda x} .
$$

Using the Principle of Superposition, our solution is

$$
B(x)=\alpha e^{\lambda x}+\beta e^{-\lambda x}
$$

- Case 3: $c<0$. If $B^{\prime \prime}=c B$ and $c<0$, then we can let $-\lambda^{2}=c$. Thus, we must solve the equation

$$
B^{\prime \prime}+\lambda^{2} B=0
$$

It is easy to verify that

$$
B(x)=\cos \lambda x \text { and } B(x)=\sin \lambda x .
$$

Using the Principle of Superposition, our solution is

$$
B(x)=\alpha \cos \lambda x+\beta \sin \lambda x .
$$

2 Uniqueness of Solutions

We must still determine that these solutions are unique. If we introduce a new variable, $P=B^{\prime}(x)$, we can rewrite the equation $B^{\prime \prime}=c B$ as a linear system of ordinary differential equations,

$$
\begin{aligned}
& \frac{d B}{d x}=P \\
& \frac{d P}{d x}=c B
\end{aligned}
$$

However, any 2×2 linear system of ODEs is completely determined by the value of P and B at $x=0$.

- Case 1: If $c=0$, then we have solution $B(x)=\alpha+\beta x$ and $P(x)=\beta$. Thus, $P(0)=\beta$ and $B(0)=\alpha$.
- Case 2: If $\lambda^{2}=c>0$, then

$$
\begin{aligned}
& B(x)=\alpha e^{\lambda x}+\beta e^{-\lambda x} \\
& P(x)=\alpha \lambda e^{\lambda x}-\beta \lambda e^{-\lambda x} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
B(0) & =\alpha+\beta \\
P(0) & =\alpha \lambda-\beta \lambda .
\end{aligned}
$$

- Case 3: If $-\lambda^{2}=c<0$, then

$$
\begin{aligned}
& B(x)=\alpha \cos \lambda x+\beta \sin \lambda x \\
& P(x)=-\alpha \lambda \sin \lambda x+\beta \lambda \cos \lambda x
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
B(0) & =\alpha \\
P(0) & =\beta \lambda .
\end{aligned}
$$

3 Modeling the Density of Protein

It is known that the concentration of certain proteins at any cell in an embryo determines whether or not a particular gene is expressed in that cell. We will consider a cell model of an embryo where

$$
u(t, x, y)
$$

is the density of protein at time t and position (x, y). We will consider our embryo to be square, $[0, L] \times[0, L]$, where Protein is produced along the left-hand edge according to

$$
u(t, 0, y)=\sin \left(\frac{\pi y}{L}\right)
$$

Observe that this function is zero at $(0,0)$ and $(0, L)$. Assume also that

$$
\begin{aligned}
u(t, x, 0) & =0 \\
u(t, x, L) & =0 \\
u(t, L, y) & =0
\end{aligned}
$$

The protein will diffuse according to the equation

$$
\frac{\partial u}{\partial t}=\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)-r u .
$$

4 Equilibrium Solutions

If there is no time dependence, then

$$
\frac{\partial u}{\partial t}=0
$$

In this case

$$
\frac{\partial u}{\partial t}=\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)-r u
$$

becomes either

- Helmholtz's Equation:

$$
\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)-r u=0
$$

- Laplace's Equation:

$$
\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=0
$$

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 17.

