
Math 19. Lecture 18

No-Trawling Zones

T. Judson

Fall 2005

1 No Trawling Zones

Deep trawling can have a devastating effect on a fishery. If we were to imple-
ment no trawling zones, what should be the minimum effective width of such
a strip? We will use lobsters as an indicator species. Suppose that lobster
populations are destroyed outside of our no trawling zone by deep trawling.
Inside our no trawling zone, the lobster population increases exponentially,
say

du

dt
= ru.

We will designate infinitely long strips of width R as no trawl zones. Our goal
is to estimate how wide the strip should be so that the lobster population
will not decrease. The lobster population should obey the equation

∂u

∂t
= µ

∂2u

∂x2
+ ru.

The first term on the right is the diffusion term accounting for lobsters ran-
domly roaming the bottom of the ocean. The second term on the right is the
population growth due to reproduction. We will assume that this growth is
exponential. The constant µ is the diffusion constant. Both µ and r may be
estimated by lab experiments or field observations.
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2 Boundary Conditions

We should look for solutions such that

u(t, 0) = u(t, R) = 0.

We will show that the lobster population will grow with time provided

R >

(

µπ2

r

)1/2

.

Hence, R depends on µ and r as we might expect.

3 Separation of Variables

Let us assume that we can find a solution of the form

u(t, x) = A(t)B(x).

For u(t, x) = A(t)B(x) to be a solution to

∂u

∂t
= µ

∂2u

∂x2
+ ru,

it must be the case that

B(x)
dA

dt
= µA(t)

d2B

dx2
+ rA(t)B(x),

where

∂u

∂t
=

[

dA

dt
(t)

]

B(x),

∂2u

∂x2
= A(t)

[

d2B

dx2
(x)

]

.

Separating the variables in this last equation, we obtain

1

A(t)

dA

dt
=

µ

B(x)

d2B

dx2
+ r.
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The variables x and t are independent. For a function of time to be equal to
a function of space, they must both be constant. Let

1

A(t)

dA

dt
=

µ

B(x)

d2B

dx2
+ r = λ.

Thus, we obtain two ordinary differential equations,

dA

dt
− λA = 0, (1)

d2B

dx2
−

λ − r

µ
B = 0. (2)

The solution to the first equation is

A(t) = A(0)eλt.

Thus, A(t) grows if λ > 0 and decays if λ < 0. Since we are interested in our
lobster population surviving, we will assume that λ ≥ 0.

We can rewrite equation (2) as

d2B

dx2
− cB = 0,

where

c =
λ − r

µ
.

We will consider three cases, c > 0, c = 0, and c < 0. The only nontrivial
case occurs when c < 0. In this case,

B(x) = α cos
√
−c x + β sin

√
−c x.

The boundary condition B(0) = 0 implies that α = 0. The second boundary
condition tells us that

β sin
(√

−c R
)

= 0.

Therefore, either β = 0 (no interesting solutions) or

sin
(√

−c R
)

= 0.

The sine function vanishes at multiples of π; hence, the later case is equivalent
to √

−c R = nπ,
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where n is any integer. Since µ, r, and R are fixed, we are restricted on how
we may choose the value of λ. Our solution to

∂u

∂t
= µ

∂2u

∂x2
+ ru.

is
u(t, x) = A(t)B(x) = βeλt sin

(nπx

R

)

,

where 0 < x < R and β > 0. Since our solution must be positive, n = 1.

x

u n = 1

x

u n = 2

Therefore, our solution is

u(t, x) = A(t)B(x) = βeλt sin
(πx

R

)

.

Since c = (λ − r)/µ and
√
−c R = π,

λ = r −
µπ2

R2
.

For the lobster population to grow,

0 < λ = r −
µπ2

R2

or

R >

(

µπ2

r

)1/2

.
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