Math 19. Lecture 17
 Advection and Diffusion-Key Properties

T. Judson

Fall 2005

1 Existence and Uniqueness of Solutions

Recall the advection equation

$$
u_{t}=-c u_{x}+r u
$$

and the diffusion equation

$$
u_{t}=\mu u_{x x}+r u
$$

These equations are completely predictive. If we specify an initial condition

$$
u(0, x)=f(x)
$$

the both the advection and diffusion equations determine $u(t, x)$ for all $t \geq 0$.

2 The Idea of the Proof

Since we know that $u(0, t)=f(x)$, the equation tells us what $u_{t}(0, x)$ for all x. This tells us what $u(\Delta t, x)$ is for small Δt and all x. Put $u(\Delta t, x)$ into the left side of the PDE to find out what u is at $t=\Delta t$ for any x. This tells us what $u(2 \Delta t, x)$ is for small Δt and all x. Now continue \ldots

3 Solutions

We already know that the advection equation has solutions of the form

$$
u(t, x)=e^{r t} u(0, x-c t)
$$

where $u(0, x-c t)=f(x-c t)$. The fundamental solutions of the diffusion equation are a bit more complicated,

$$
u(t, x)=\frac{1}{\sqrt{4 \pi \mu t}} e^{r t} \int_{-\infty}^{\infty} u(0, s) e^{-(x-s)^{2} / 4 \mu t} d s
$$

This solution is a bit too complicated to be useful.

4 The Superposition Principle

For any linear PDE, the sum of two solutions is a solution, and multiple of a solution is a solution. That is, if u_{1} and u_{2} are solutions to a linear PDE, then

$$
\begin{equation*}
\alpha u_{1}+\beta u_{2} \tag{1}
\end{equation*}
$$

is a solution. An expression of the form (1) is called a linear combination of u_{1} and u_{2}. Show this for

$$
\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}+r u .
$$

5 Building Solutions

The Principle of Superposition allows us to build complicated solutions out of simple solutions. For example, if

$$
\begin{aligned}
& u_{1}(t, x)=\frac{1}{t^{1 / 2}} e^{-x^{2} / 4 \mu t} \\
& u_{2}(t, x)=\frac{1}{t^{1 / 2}} e^{-(x-1)^{2} / 4 \mu t} \\
& u_{3}(t, x)=\frac{1}{t^{1 / 2}} e^{-(x+1)^{2} / 4 \mu t}
\end{aligned}
$$

are solutions to

$$
\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}+r u
$$

then

$$
u(t, x)=3 u_{1}(t, x)-2 u_{2}(t, x)+5 u_{3}(t, x)
$$

is also a solution.

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 15.

