Math 19. Lecture 17 Advection and Diffusion—Key Properties

T. Judson

Fall 2005

1 Existence and Uniqueness of Solutions

Recall the advection equation

$$u_t = -cu_x + ru$$

and the diffusion equation

$$u_t = \mu u_{xx} + ru.$$

These equations are completely predictive. If we specify an *initial condition*

$$u(0,x) = f(x).$$

the both the advection and diffusion equations determine u(t, x) for all $t \ge 0$.

2 The Idea of the Proof

Since we know that u(0,t) = f(x), the equation tells us what $u_t(0,x)$ for all x. This tells us what $u(\Delta t, x)$ is for small Δt and all x. Put $u(\Delta t, x)$ into the left side of the PDE to find out what u is at $t = \Delta t$ for any x. This tells us what $u(2\Delta t, x)$ is for small Δt and all x. Now continue ...

3 Solutions

We already know that the advection equation has solutions of the form

$$u(t,x) = e^{rt}u(0,x-ct),$$

where u(0, x - ct) = f(x - ct). The fundamental solutions of the diffusion equation are a bit more complicated,

$$u(t,x) = \frac{1}{\sqrt{4\pi\mu t}} e^{rt} \int_{-\infty}^{\infty} u(0,s) e^{-(x-s)^2/4\mu t} \, ds.$$

This solution is a bit too complicated to be useful.

4 The Superposition Principle

For any linear PDE, the sum of two solutions is a solution, and multiple of a solution is a solution. That is, if u_1 and u_2 are solutions to a linear PDE, then

$$\alpha u_1 + \beta u_2 \tag{1}$$

is a solution. An expression of the form (1) is called a *linear combination* of u_1 and u_2 . Show this for

$$\frac{\partial u}{\partial t} = \mu \frac{\partial^2 u}{\partial x^2} + ru.$$

5 Building Solutions

The Principle of Superposition allows us to build complicated solutions out of simple solutions. For example, if

$$u_1(t,x) = \frac{1}{t^{1/2}}e^{-x^2/4\mu t}$$

$$u_2(t,x) = \frac{1}{t^{1/2}}e^{-(x-1)^2/4\mu t}$$

$$u_3(t,x) = \frac{1}{t^{1/2}}e^{-(x+1)^2/4\mu t}$$

are solutions to

$$\frac{\partial u}{\partial t} = \mu \frac{\partial^2 u}{\partial x^2} + ru,$$

then

$$u(t,x) = 3u_1(t,x) - 2u_2(t,x) + 5u_3(t,x)$$

is also a solution.

Readings and References

• C. Taubes. *Modeling Differential Equations in Biology*. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 15.