Math 19. Lecture 16
 The Diffusion Equation

T. Judson

Fall 2005

1 Advection-One More Time

Recall the advection equation

$$
\frac{\partial u}{\partial t}=-\frac{\partial q}{\partial x}+k(t, x)
$$

where

- $q(t, x)$ is the net number of particles that pass x from left to right.
- $k(t, x)$ is the net number of particles created per unit length at time t and position x. What comes in either stays in or goes out again.

The advection equation becomes useful when we can specify q and k. In our example, we had

$$
\frac{\partial u}{\partial t}=-c \frac{\partial u}{\partial x}-r u
$$

with solution

$$
u(t, x)=e^{-r t} f(x-c t)
$$

where f is any differentiable function evaluated at $s=x-c t$.
To verify the solution, notice that

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =-r e^{-r t} f(x-c t)+e^{-r t} \frac{\partial}{\partial t} f(x-c t) \\
\frac{\partial u}{\partial x} & =e^{-r t} \frac{\partial}{\partial x} f(x-c t)
\end{aligned}
$$

If

$$
\frac{\partial u}{\partial t}=-c \frac{\partial u}{\partial x}-r u
$$

then

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =-r e^{-r t} f(x-c t)+e^{-r t} \frac{\partial}{\partial t} f(x-c t) \\
& =-c \frac{\partial u}{\partial x}-r u \\
& =-c e^{-r t} \frac{\partial}{\partial x} f(x-c t)-r e^{-r t} f(x-c t)
\end{aligned}
$$

or

$$
\frac{\partial}{\partial t} f(x-c t)=-c \frac{\partial}{\partial x} f(x-c t)
$$

Applying the chain rule, it must be the case that

$$
-c f(x-c t)=-c f(x-c t) .
$$

This equation works when particle motions is entirely due to advection.

2 The Diffusion Equation

If the ambient fluid is a rest, then particle movement can be modeled by the diffusion or heat equation,

$$
\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}+k(t, x),
$$

where k may depend on u. The constant μ is called the diffusion coefficient, where

$$
\mu=\sqrt{\text { average of the squares of the velocities of the particles. }}
$$

The diffusion equation is

$$
\frac{\partial u}{\partial t}=-\frac{\partial q}{\partial x}+k(t, x)
$$

where

$$
q(t, x)=-\mu \frac{\partial u}{\partial x}
$$

is the net number of particles moving from left to right per unit time, which is proportional to the change in density.

3 Solutions to the Diffusion Equation

Solutions to

$$
\frac{\partial u}{\partial t}=\mu \frac{\partial^{2} u}{\partial x^{2}}
$$

are of the form

$$
u(t, x)=\frac{a}{\sqrt{t}} e^{-x^{2} / 4 \mu t}
$$

For a fixed t, these solutions graph as normal curves.

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 14.
- "Past Temperatures Directly from the Greenland Ice Sheet," pp. 238245.

