Math 19. Lecture 15
 Introduction to Advection (II)

T. Judson

Fall 2005

1 The Advection Equation

Recall that an advection equation has the form

$$
\frac{\partial u}{\partial t}=-c \frac{\partial u}{\partial t}-r u
$$

The solutions to this equations are of the form

$$
u(t, x)=e^{-r t} f(x-c t)
$$

where f is any differentiable function in one variable and the choice of f is determined by initial and boundary conditions.

2 Boundary and Initial Conditions

Suppose that we know $u(0, x)=g(x)$ is an initial condition for

$$
\frac{\partial u}{\partial t}=-3 \frac{\partial u}{\partial t}-r u
$$

That is, the particle density is given by $g(x)$ right before the explosion. Since every solution to this PDE can be written in the form

$$
u(t, x)=e^{-r t} f(x-3 t)
$$

we know that

$$
g(x)=u(0, x)=f(x)
$$

or

$$
u(t, x)=e^{-r t} g(x-3 t)
$$

3 Traveling Wave Solutions

First, observe that $u_{t}=-3 u_{x}-r u$ predicts the values for $u(t, x)$ at all times $t \geq 0$, and all of the points x. Then $q(t, x)=3 u(t, x)$ is predictive when the value of $u(t, 0)$ is specified for all t. If $u(t, 0)=h(t)$, we say that this is a boundary condition for $u_{t}=-3 u_{x}-r u$. Thus,

$$
h(t)=u(t, 0)=e^{-r t} f(-3 t),
$$

or if we make the substitution $s=-3 t$,

$$
f(s)=e^{-r s / 3} h(-s / 3) .
$$

Therefore, our solution becomes

$$
u(t, x)=e^{-r t} e^{-r(x-3 t) / 3} h((3 t-x) / 3) .
$$

In the example of our meltdown, this resembles a traveling wave.

Homework

- Chapter 13. Exercises 1, 3, 5, 6, 7, 8; pp. 213-215.

Reading and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 13.
- "Malaria: Focus on Mosquito Genes" pp. 198-202.

