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1 The Advection Equation

Recall that an advection equation has the form
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The solutions to this equations are of the form
U(t, JI) = e_rtf('r - Ct)7

where f is any differentiable function in one variable and the choice of f is
determined by initial and boundary conditions.

2 Boundary and Initial Conditions

Suppose that we know u(0,x) = ¢g(z) is an initial condition for
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That is, the particle density is given by g(z) right before the explosion. Since
every solution to this PDE can be written in the form

u(t,x) = e " f(x — 3t),
we know that
9(x) = u(0,z) = f(z)

or
u(t,z) = e "g(z — 3t).



3 'Traveling Wave Solutions

First, observe that u; = —3u, — ru predicts the values for u(t, z) at all times
t > 0, and all of the points x. Then ¢(t,z) = 3u(t, z) is predictive when the
value of u(t,0) is specified for all ¢. If u(¢,0) = h(t), we say that this is a
boundary condition for u; = —3u, — ru. Thus,

h(t) = u(t,0) = e " f(—3t),
or if we make the substitution s = —3t,
f(s) =e"3n(—s/3).
Therefore, our solution becomes
u(t,z) = e e T @BVBR((3t — 2)/3).

In the example of our meltdown, this resembles a traveling wave.

Homework

e Chapter 13. Exercises 1, 3, 5, 6, 7, 8; pp. 213-215.

Reading and References
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Upper Saddle River, NJ, 2001. Chapter 13.

e “Malaria: Focus on Mosquito Genes” pp. 198-202.



