Math 19. Lecture 14 Introduction to Advection (I)

T. Judson

Fall 2005

1 An Explosion Example

Suppose a meltdown at a nuclear reactor pumps radioactive pollution into the air. A wind blows from west to east at $3 \mathrm{~m} / \mathrm{sec}$. Particles fall out of the air at a constant rate r. We wish to know the particle concentration east and west of the explosion at location x and time t. Let the density function,

$$
u=u(t, x),
$$

be the number of particles per meter.
The amount of particulate mater in the region between x and $x+\Delta x$ at time t is approximately $u(t, x) \Delta x$. The rate of change with respect to time is

$$
\frac{d}{d t} u(t, x) \Delta x=q(t, x)-q(t, x+\Delta x)+k(t, x) \Delta x
$$

where

- $q(t, x)$ is the number of particles that pass x from left to right, so $-q(t, x)$ is the number of particles that pass x from right to left.
- $q(t, x+\Delta x)$ is the number of particles that pass $x+\Delta x$ from left to right, so $-q(t, x+\Delta x)$ is the number of particles that pass $x+\Delta x$ from right to left.
- $k(t, x)$ is the net number of particles created in $[x, x+\Delta x]$. That is, $k(t, x)$ is the number created minus the number destroyed. In our example,

$$
k(t, x)=-r u(t, x)
$$

Thus,

$$
\frac{d}{d t} u(t, x) \Delta x=q(t, x)-q(t, x+\Delta x)+k(t, x) \Delta x
$$

or

$$
\frac{d}{d t} u(t, x)=-\frac{q(t, x+\Delta x)-q(t, x)}{\Delta x}+k(t, x) .
$$

As $\Delta x \rightarrow 0$, this last expression becomes

$$
\frac{\partial u}{\partial t}(t, x)=-\frac{\partial q}{\partial x}(t, x)+k(t, x) .
$$

In our example,

$$
\begin{aligned}
k(t, x) & =-r u(t, x) \\
q(t, u) & =3 u(t, x) .
\end{aligned}
$$

Thus, we obtain the advection equation.

$$
\frac{\partial u}{\partial t}=-3 \frac{\partial u}{\partial x}-r u
$$

2 Solutions to the Advection Equation

Every solution to

$$
\frac{\partial u}{\partial t}=-3 \frac{\partial u}{\partial x}-r u
$$

can be written in the form

$$
u(t, x)=e^{-r t} f(x-3 t)
$$

where f is any differentiable function in one variable. The choice of f is determined by initial and boundary conditions.

Homework

- Chapter 13. Exercises 1, 3, 5, 6, 7, 8; pp. 213-215.

Reading and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 13.
- "Malaria: Focus on Mosquito Genes" pp. 198-202.

