Math 19. Lecture 12 Matrix Notation

T. Judson

Fall 2005

1 Matrix Basics

Recall that we can rewrite the system

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y
\end{aligned}
$$

using matrix notation as

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

where

$$
\mathbf{x}=\binom{x(t)}{y(t)}, \frac{d \mathbf{x}}{d t}=\binom{x^{\prime}(t)}{y^{\prime}(t)}, \text { and } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

2 Matrix Operations

- Addition of matrices.
- Multiplying a matrix by a scalar.
- The product of a matrix and a column vector

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}=x\binom{a}{c}+y\binom{b}{d}
$$

- The product of two matrices

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\binom{x}{y} & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{e x+f y}{g x+h y} \\
& =\binom{(a e+b g) x+(a f+b h) y}{(c e+d g) x+(c f+d h) y} \\
& =\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right)\binom{x}{y} .
\end{aligned}
$$

- $A B=\left(A \mathbf{b}_{1}, A \mathbf{b}_{2}\right)$.
- In general, $A B \neq B A$.

3 Solving a 2×2 Linear System

Consider the system

$$
\begin{aligned}
& \frac{d x}{d t}=x+2 y \\
& \frac{d y}{d t}=4 x+3 y
\end{aligned}
$$

with initial conditions $x(0)=1$ and $y(0)=1$. For

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

we can guess that the solution is of the form

$$
\mathbf{x}(t)=\binom{c_{1} e^{\lambda t}}{c_{2} e^{\lambda t}}
$$

where $\lambda, c_{1}, c_{2} \in \mathbb{R}$.

4 Checking the Guess

On the one hand, we have

$$
\frac{d \mathbf{x}}{d t}=\lambda\binom{c_{1} e^{\lambda t}}{c_{2} e^{\lambda t}}=\lambda \mathbf{x} .
$$

On the other hand,

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}=e^{\lambda t} A\binom{c_{1}}{c_{2}}
$$

To ensure a solution, we must choose λ, c_{1}, c_{2} such that

$$
A\binom{c_{1}}{c_{2}}=\lambda\binom{c_{1}}{c_{2}}
$$

5 Finding Eigenvalues and Eigenvectors

Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \text { and } \mathbf{x}=\binom{x_{1}}{x_{2}}
$$

The system $A \mathbf{x}=\lambda \mathbf{x}$ can be written as either

$$
\begin{aligned}
x_{1}+2 x_{2} & =\lambda x_{1} \\
4 x_{1}+3 x_{2} & =\lambda x_{2} .
\end{aligned}
$$

We can reduce this system to

$$
\begin{aligned}
& (1-\lambda) x_{1}+2 x_{2}=0 \\
& \left(\lambda^{2}-4 \lambda-5\right) x_{2}=0
\end{aligned}
$$

Therefore, to obtain a nonzero solution either $\lambda=5$ or $\lambda=-1$.

- If $\lambda=5$, the first equation in the system becomes $-2 x_{1}+x_{2}=0$, and we can let

$$
\mathbf{x}=\binom{1}{2}
$$

- If $\lambda=-1$, then

$$
\mathbf{x}=\binom{1}{-1}
$$

For

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

The number λ is called an eigenvalue of A, and $\mathbf{x} \neq \mathbf{0}$ is an eigenvector corresponding to λ.

6 The Principle of Superposition

The solutions to the system

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right)\binom{x(t)}{y(t)}
$$

must be of the form

$$
\binom{x(t)}{y(t)}=\alpha e^{5 t}\binom{1}{2} \text { or }\binom{x(t)}{y(t)}=\beta e^{-t}\binom{1}{-1}
$$

The Principle of Superposition tells us that any linear combination of solutions to a linear equation is also a solution. Therefore

$$
\binom{x(t)}{y(t)}=\alpha e^{5 t}\binom{1}{2}+\beta e^{-t}\binom{1}{-1} .
$$

Thus,

$$
\begin{aligned}
x(t) & =\frac{2}{3} e^{5 t}+\frac{1}{3} e^{-t} \\
y(t) & =\frac{4}{3} e^{5 t}-\frac{1}{3} e^{-t} .
\end{aligned}
$$

Homework

- Chapter 11. Exercises 1, 2, 3, 4; p. 177.

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 11.

