Math 19. Lecture 9
 Equilibrium in Two Component Systems

T. Judson

Fall 2005

1 Uniqueness of Solutions

A two-component linear system is a system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y
\end{aligned}
$$

Given initial conditions, $(x(0), y(0))=\left(x_{0}, y_{0}\right)$, the system has a unique solution and is completely predictive. We can also write this system in matrix form as

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

where

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \mathbf{x}(t)=\binom{x(t)}{y(t)}, \text { and } \mathbf{x}^{\prime}(t)=\binom{x^{\prime}(t)}{y^{\prime}(t)} .
$$

An equilibrium solution to the system where $\mathbf{x}(t)=(x(t), y(t))$ is a constant vector.

2 Determinants

The system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ has an equilibrium solution at $(0,0)$ if it has only the solution $x=y=0$. Another way of viewing this fact is to observe that
the two lines

$$
\begin{aligned}
& a x+b y=0 \\
& c x+d y=0
\end{aligned}
$$

are not parallel if and only if $a d-b c \neq 0$. We define the determinant of A to be

$$
\operatorname{det}(A)=a d-b c
$$

3 Stability Criterion

The constant solution $\mathbf{0}$ is said to be stable when all trajectories that start in some region with $\mathbf{0}$ inside move closer to $\mathbf{0}$ as $t \rightarrow \infty$. Otherwise, $\mathbf{0}$ is unstable. The system $\mathbf{x}^{\prime}=A \mathbf{x}$ is stable if and only if

$$
\begin{aligned}
\operatorname{tr}(A) & <0 \\
\operatorname{det}(A) & >0
\end{aligned}
$$

4 An Equation for $x(t)$

Let us examine 2×2 linear systems more closely. Let

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x(t)}{y(t)},
$$

where $x(0)=x_{0}$ and $y(0)=y_{0}$.

4.1 An Uncoupled System

Let us first assume that $b=c=0$. Then the solution to the system

$$
\begin{aligned}
x^{\prime} & =a x \\
y^{\prime} & =d y
\end{aligned}
$$

is

$$
\begin{aligned}
& x=x_{0} e^{a t} \\
& y=y_{0} e^{d t}
\end{aligned}
$$

This system is stable if both a and d are negative. This occurs exactly when $\operatorname{det}(A)>0$ and $\operatorname{tr}(A)<0$.

4.2 The General Case

For the general case, we will let

$$
\mathbf{x}_{0}=\binom{x(0)}{y(0)} \text { and } \mathbf{w}_{0}=\binom{(a-d) x(0) / 2+b y(0)}{c x(0)+(d-a) y(0) / 2}
$$

and

$$
\Delta=\frac{1}{4} \operatorname{tr}(A)^{2}-\operatorname{det}(A)
$$

We have exactly three types of solutions. ${ }^{1}$

- Case 1: $\Delta>0$.

$$
\mathbf{x}(t)=\frac{1}{2} e^{\operatorname{tr}(A) t / 2}\left(e^{\sqrt{\Delta t}}\left(\mathbf{x}_{0}+\Delta^{-1 / 2} \mathbf{w}_{0}\right)+e^{-\sqrt{\Delta t}}\left(\mathbf{x}_{0}-\Delta^{-1 / 2} \mathbf{w}_{0}\right)\right)
$$

- Case 2: $\Delta=0$.

$$
\left.\mathbf{x}(t)=e^{\operatorname{tr}(A) t / 2}\left(\mathbf{x}_{0}+t \mathbf{w}_{0}\right)\right)
$$

- Case 3: $\Delta<0$.

$$
\mathbf{x}(t)=\frac{1}{2} e^{\operatorname{tr}(A) t / 2}\left(\cos \left(|\Delta|^{1 / 2} t\right) \mathbf{x}_{0}+|\Delta|^{-1 / 2} \sin \left(|\Delta|^{1 / 2} t\right) \mathbf{w}_{0}\right)
$$

[^0]In each case, you can get an unstable solution if \mathbf{x}_{0} is chosen poorly and the conditions

$$
\begin{aligned}
\operatorname{tr}(A) & <0 \\
\operatorname{det}(A) & >0
\end{aligned}
$$

are violated.

Homework

- Chapter 8. Exercises 1, 2, 3, 4, 5, 7; pp. 138-139.

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 8.
- "Better Protection for the Ozone Layer," pp. 131-138.

[^0]: ${ }^{1}$ These solutions can be derived using linear algebra. See Math 21b or Math 106.

