Math 19. Lecture 6
 First-Order Systems

T. Judson

Fall 2005

1 Competing Species

Let x and y be the populations of two species at time t. We will assume that each species, in absence of the other, grows logistically:

$$
\begin{aligned}
x^{\prime} & =x\left(a_{1}-b_{1} x\right) \\
y^{\prime} & =y\left(a_{2}-b_{2} y\right)
\end{aligned}
$$

where a_{1}, a_{2} are the growth rates of the two populations and $a_{1} / b_{1}, a_{2} / b_{2}$ are the carrying capacities. The simplest expression for reducing the growth rate of species x due to the presence of species y is to replace the growth factor $a_{1}-b_{1} x$ with $a_{1}-b_{1} x-\alpha_{1}$, where is a measure of the degree to which species y interferes with species x. The new system is now

$$
\begin{aligned}
x^{\prime} & =x\left(a_{1}-b_{1} x\right)-\alpha_{1} x y \\
y^{\prime} & =y\left(a_{2}-b_{2} y\right)-\alpha_{2} x y .
\end{aligned}
$$

2 Left and Right-Curling Snails

Let $L(t)$ denote the number (in millions) of left curling snails at time t and $R(t)$ the number of right-curling snails. The two populations compete for the same resources and might be governed by the following system of differential equations.

$$
\begin{aligned}
& \frac{d R}{d t}=R-\left(R^{2}+a R L\right) \\
& \frac{d L}{d t}=L-\left(L^{2}+a L R\right)
\end{aligned}
$$

The Case $a>1$
Suppose $a=2$. Then

$$
\begin{aligned}
& \frac{d R}{d t}=R-\left(R^{2}+2 R L\right) \\
& \frac{d L}{d t}=L-\left(L^{2}+2 L R\right)
\end{aligned}
$$

The Case $a<1$
Suppose $a=1 / 2$. Then

$$
\begin{aligned}
& \frac{d R}{d t}=R-\left(R^{2}+R L / 2\right) \\
& \frac{d L}{d t}=L-\left(L^{2}+L R / 2\right)
\end{aligned}
$$

3 The Lotka-Volterra Equation

Suppose we have a population of rabbits, R, and foxes, F. The system

$$
\begin{aligned}
\frac{d R}{d t} & =(a-b R-c F) R \\
\frac{d F}{d t} & =(-d+e R) F
\end{aligned}
$$

models the predator-prey relationship between the foxes and rabbits. Consider the following systems.

$$
\begin{aligned}
\frac{d R}{d t} & =(2-1.2 F) R \\
\frac{d F}{d t} & =(-1+0.9 R) F
\end{aligned}
$$

-

$$
\begin{aligned}
\frac{d R}{d t} & =(2-R-1.2 F) R \\
\frac{d F}{d t} & =(-1+0.9 R) F
\end{aligned}
$$

Homework

- Chapter 5. Exercises 1; p. 86.

Readings and References

- C. Taubes. Modeling Differential Equations in Biology. Prentice Hall, Upper Saddle River, NJ, 2001. Chapter 5.
- "Left Snails and Right Minds," pp. 23-31.

