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1 Competing Species

Let z and y be the populations of two species at time t. We will assume
that each species, in absence of the other, grows logistically:

¥ = x(a; —bix)

"= ylaz — bay),

where aq, ay are the growth rates of the two populations and a; /b1, as/bs
are the carrying capacities. The simplest expression for reducing the growth
rate of species x due to the presence of species y is to replace the growth
factor a; — bix with a; — bix — a1, where is a measure of the degree to which
species y interferes with species z. The new system is now

¥ = z(a; —b1z) — a1y

"= y(ag — bay) — aszy.

2 Left and Right-Curling Snails

Let L(t) denote the number (in millions) of left curling snails at time ¢
and R(t) the number of right-curling snails. The two populations compete
for the same resources and might be governed by the following system of
differential equations.
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The Case a > 1
Suppose a = 2. Then

The Case a < 1
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L =L-(+ 'R
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= L—(L?+2LR).
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Suppose a = 1/2. Then
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R =R-(R?+a*R)

L =L-(+aR')
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3 The Lotka-Volterra Equation

Suppose we have a population of rabbits, R, and foxes, F'. The system
dR

b bR — ¢F
i (a —bR —cF)R
dF

models the predator-prey relationship between the foxes and rabbits.
Consider the following systems.
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R =(2-R-12°A"R
F' = (-1 + 0.9'R)'F
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Homework

e Chapter 5. Exercises 1; p. 86.

Readings and References

e C. Taubes. Modeling Differential Equations in Biology. Prentice Hall,
Upper Saddle River, NJ, 2001. Chapter 5.

e “Left Snails and Right Minds,” pp. 23-31.



