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Fractal Objects : self-similarity

exact self-similarity :

statistical self-similarity :

f(x0 + λu) − f(x0) ∼ λh(x0)
(

f(x0 + u) − f(x0)
)



Self-similarity and Wavelet Transform

Wavelet Transform : a mathematical microscope to study fractal objects
self-similarity properties

Tψ[f ](a, b) =< f,ψa,b >=
1

√
a

∫ +∞

−∞
dx f(x)ψ∗(

x− b

a
)

local self-similarity (Hölder exponent) can be seen in the wavelet transform coefficients
under scaling laws (Jaffard, Mallat et coll., Holschneider and Tchamitchian) :

Tψ[f ](a, x0) ∼ ah(x0)+
1
2 , a → 0+

statistical description of self-similarity :
WTMM method (Wavelet Transform Modulus Maxima) by Muzy, Bacry, Arnéodo (1993) for

multifractal signals .

many applications in bioinformatics (DNA Sequences), in turbulence, in finance, in
geophysics,...



classical multifractal formalism comes from turbulence

The Navier-Stokes equations:

∂tu + u.∇ u = −
1

ρ
∇p + f + ν∆u, +∇.u = 0 + BC + CI

turbulent regime : ||u.∇ u|| >> ||ν∆u||

signal highly disorganized and structures at all scales, unpredictable as for details

☞ Statistical tools required



Multifractal description of intermittency in turbulence

————————————————-



Multifractal description of intermittency in turbulence

classical multifractal formalism comes from turbulence

☞ multifractal model for velocity : longitudinal structure functions based on (1D)
velocity increments :

Sp(l) = < (e.δv(r, le))p > ∼ lζp, p > 0

☞ multifractal model for (1D surrogate) dissipation : RSH hypothesis

Sp(l) ∼ < ε
p/3
l > lp/3 ∼ lτε(p/3)+p/3 .

Measure of the spectra τε(p) and f(α) with the box-counting method.

multifractal formalism based on WT (WTMM method) for regularity analysis of functions,
measures and distributions.

☞ generalization of the WTMM method 1D/2D→3D

☞ generalization to multidimensional vector fields. First application to velocity and
vorticity fields from numerical turbulent flows.



2D WTMM Methodology : PhD work of N. Decoster

2D data : I
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Tψ(r, a) =

(

I ∗ ∂φa
∂x

(r)

I ∗ ∂φa
∂y

(r)

)

Tψ(r, a) = ∇
(

I∗φa
)

(r) =
(

Mψ(r, a),Aψ(r, a)
)

↓



WTMM Methodology : Skeleton

WTMM Chains

WTMMM

WTMM Chains at 3 different scales

WTMMM linking : WT skeleton



Local roughness characterization : Hölder exponent

f(x0 + λu) − f(x0) ∼ λh(x0)
(

f(x0 + u) − f(x0)
)

• Monofractal Image

M ∼ ah,
single h

• Multifractal Image

M ∼ ah, ah, ah,
h ∈ [hmin, hmax]



WTMM Method : multifractal formalism

Singularity spectrum :

D(h) = dH
{

r ∈ Rd, h(r) = h
}

Legendre transform :

D(h) = minq
(

qh− τ (q)
)

D(h)

h

D

h

D

h

D

D

D(h)

h h h
Analogy statistical physics : compute

partition functions

Z(q, a) =
∑

L(a)

(

Mψ(r, a)
)q ∼ aτ(q)

H(q, a) =
∑

L(a)

ln |Mψ(r, a)| Wψ(r, a) ∼ ah(q)

D(q, a) =
∑

L(a)

ln |Wψ(r, a)| Wψ(r, a) ∼ aD(q)
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Application to synthetic monofractal surfaces

fractional Brownian surfaces : BH(r)

H < 0.5 : anti-correlated increments

H = 0.5 : non-correlated increments

H > 0.5 : correlated increments

Theoretical Predictions :

τ (q) is linear :

τ (q) = qH − 2

multifractal spectrum is

degenerated :

D(h = H) = 2



Application to synthetic multifractal surfaces

FISC (Fractionally Integrated Singular Cascades) model

simple multiplicative model : p-model or multinomial model

p1 2p

4p3p

M

MM

M
p1p1

p1
p1

p1 2p

3p 4p

M M

MM

M

fractional integration (Fourier domain)

generalization : p is a random variable with < p >= 1/4 (conservative
cascading process)



Application to synthetic multifractal surfaces

Multifractal (Fractionally Integrated
Singular Cascades) surfaces

Theoretical predictions :

τ (q) is non-linear

τ (q) = −2 − q(1 −H∗)

− log2(p1
q + p2

q)

singularity spectrum is a non-

degenerated convex curve



classical multifractal formalism comes from turbulence

The Navier-Stokes equations:

∂tu + u.∇ u = −
1

ρ
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Multifractal description of intermittency in turbulence

classical multifractal formalism comes from turbulence

☞ multifractal model for velocity : longitudinal structure functions based on (1D)
velocity increments :

Sp(l) = < (e.δv(r, le))p > ∼ lζp, p > 0

☞ multifractal model for (1D surrogate) dissipation : RSH hypothesis

Sp(l) ∼ < ε
p/3
l > lp/3 ∼ lτε(p/3)+p/3 .

Measure of the spectra τε(p) and f(α) with the box-counting method.

multifractal formalism based on WT (WTMM method) for regularity analysis of functions,
measures and distributions.

☞ generalization of the WTMM method 1D/2D→3D

☞ generalization to multidimensional vector fields. First application to velocity and
vorticity fields from numerical turbulent flows.



3D scalar WTMM method
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3D scalar WTMM method : skeleton

WTMM surfaces

WTMMM points

WTMM surfaces at 3 different scales

Linking WTMMM : WT Skeleton (projection along z)



Recursive filters in 3D

2 4
0

0.5

1.0 e−x2/2σ2

x/σ

y

2 4
0

−0.5

−1.0

(−1 + x2

σ2 )e−x2/2σ2

x/σ

y

filters with separated variables

Approximate Gaussian filter e−x
2/2σ2

with hσ(x)

(a0 cos(ω0
x
σ
) + a1 sin(ω0

x
σ
)) exp−b0

x
σ

+(c0 cos(ω1
x
σ
) + c1 sin(ω1

x
σ
)) exp−b1

x
σ

4th order difference equation :
yk = n00xk + n11xk−1 + n22xk−2 +
n33xk−3−d11yk−1−d22yk−2−d33yk−3−
d44yk−4

comparison FFT/recursive filters :
computing time decrease in 3D case:

☞ 60 % for Gaussian filter

☞ 25 % for Mexican filter



Test-application to synthetic 3D monofractal fields

fractional Brownian fields : BH(r)

➳ H < 0.5 : anti-correlated increments

➳ H = 0.5 : non-correlated increments

➳ H > 0.5 : correlated increments

Theoretical predictions :

☞ τ (q) is linear:
τ (q) = qH − 3

☞ multifractal spectrum is
degenerated:
D(h = H) = 3



Test-application to synthetic 3D multifractal fields

3D multifractal fields (Fractionally Integrated
Singular Cascades)

Theoretical predictions :

☞ τ (q) = −2 − q(1 −H∗)
− log2(p1

q + p2
q).

with p1 + p2 = 1

☞ singularity spectrum is a
non-degenerated convexe curve



3D dissipation field : isotropic turbulence DNS

pseudo-spectral code, (512)3 grid, Rλ = 216 (M. Meneguzzi)



3D WTMM methodology vs Box-Counting algorithms

☞ “Box-Counting” algorithm, binomial fit with p1 = 0.3 and p2 = 0.7 →
p1 + p2 = 1 : diagnoses a conservative multiplicative structure

☞ “3D WTMM”method reveals a non-conservative multiplicative structure :

binomial fit with p1 = 0.36 and p2 = 0.80 ⇒ p1 + p2 6= 1

dissipation

binomial model :
τ (q) = −2−q−log2(p1

q+p2
q)

remark:
p1 = p1

p1+p2

⇒ inconsistent
box-counting !
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Comparative 3D WTMM analysis of dissipation and enstrophy

☞ Dissipation, non-conservative multiplicative structure :

binomial fit with p1 = 0.36 and p2 = 0.80 ⇒ p1 + p2 = 1.16

☞ Enstrophy, non-conservative multiplicative structure :

binomial fit with p1 = 0.38 and p2 = 0.94 ⇒ p1 + p2 = 1.32

Intermittency coefficients:

Dissipation :
C2 ∼ 0.22

Enstrophy :
C2 ∼ 0.30



Self-similar multifractal vector-valued measure (2D case)
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☞ Falconer and O’Neil (1995)

☞ scalar measure {r : lim
l→0

logµ(B(r,l))

log l
= α}, α = h+ 2

Z(q, l) =
∑

i µ
q
i (l) ∼ lτµ(q)

☞ vector-valued measure

{

r : lim
l→0

log
∫

B(r,l)
||Φlµ(s)||dLd(s)

log l
= α

}

, α = h+ 2

Z(q, l) =
∑

i ||Φlµ||qi ∼ lτµ(q)



Self-similar multifractal vector-valued measure (2D case)

☞ τµ(q) = − log(p
q
1+p

q
2+p

q
3+p

q
4)

log 2

☞ Dµ(h) = fµ(α− 2) = infq(qh− τµ(q)).



Tensorial wavelet transform (2D case)

1. Tensorial wavelet transform of field V = (V1, V2) :

Tψ[V](b, a) = (Tψi
[Vj](b, a)) =





Tψ1
[V1] Tψ1

[V2]

Tψ2
[V1] Tψ2

[V2]





Tψi
[Vj ](b, a) = a−2

∫

d2xr ψi
(

a−1(r− b)
)

Vj(r), j = 1, 2

2. Direction of greatest variation of vector field :

|Tψ[V]| = sup
C6=0

||Tψ[V].C||
||C||

3. Singular value decomposition of WT tensor:

Tψ[V] =
(

G
)

.( σmax 0
0 σmin

).
(

D
)T

4. Tensorial wavelet transform :

Tψ,max[V](b, a) = σmaxGσmax



Tensorial 2D WTMM methodology

Data
Tensorial wavelet transform

-

Tψ,max[V](b, a) = σmaxGσmax

Modulus Maxima σmax chains of tensorial wavelet
transform at scale a :

{

(b, a)/
∂σmax

∂Gmax

= 0 et
∂2σmax

∂G2
max

< 0

}

↓



Tensorial 2D WTMM methodology: Skeleton

WTMM Chains

WTMMM

WTMM Chains at 3 different scales

WTMMM linking: WT Skeleton



Monofractal 2D vector fields

fractional Brownian fields : BH(r)

☞ Spectral method simulation

Theoretical predictions :
linear τ (q): τ (q) = qH − 2

degenerated singularity spectrum:

D(h = H) = 2



2D self-similar multifractal vector-valued measures

Self-similar multifractal vector-valued measures
(Falconer and O’Neil’s model)

• vectorial box-counting

◦ vectorial 2D WTMM method

Theoretical predictions:

τ(q) = − log2(p1
q+p2

q+p3
q+p4

q)

p1 = p4 = 0.5, p2 = 2 and p3 = 1

vectorial box-counting is less accurate



Tensorial 3D WTMM method: turbulent velocity field (Rλ = 140)



Tensorial 3D WTMM method: singularity spectrum of velocity

parabolic fit : τ(q) = −C0 − C1q − C2
q2

2

intermittency coefficient C2 = 0.049± 0.004

1D increments method:

longitudinal : C2(δvL) ∼ 0.025

transverse : C2(δvT ) ∼ 0.040



Tensorial 3D WTMM method: turbulent velocity field (Rλ = 140)



Tensorial 3D WTMM method: singularity spectrum of vorticity

¤ vorticity

◦ Dv(h+ 1) spectrum translated velocity

⇒ same 3D intermittency coefficient !



Tensorial 3D WTMM method: singularity spectrum of vorticity

¤ vorticity

◦ Dv(h+ 1) spectrum translated velocity

⇒ same 3D intermittency coefficient !



Conclusion

assessment:

WTMM multifractal analysis: moving towards vector fields

outlooks :

☞ better understanding of the information embedded in the WT tensor.

☞ identification of coherent structures in turbulence using WT tensor’s smallest singular
value: vorticity filaments or sheets.

☞ others applications : astrophysics (interstellar medium, interstellar turbulence), MHD,
geophysics, ...

Thanks :

E. Lévêque, Laboratoire de Physique, ENS Lyon (Turbulent flows DNS).
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P. Kestener and A. Arneodo, Phys. Rev. Lett., 93:044501, 2004.



Scalar 3D WTMM method: Galaxy distribution simulation data

Preliminary results :

Isosurface plots of data and 3D WT modulus (Gaussian filtering) :

z = 5 z = 2 z = 0



3D Box-Counting method: singularity spectrum (z = 0 and z = 5)

NO CLEAR SCALING !!!

perhaps scaling at large scales ??



Scalar 3D WTMM method: singularity spectrum (z = 0 and z = 5)

parabolic fit : τ(q) = −C0 − C1q − C2
q2

2

intermittency coefficients C2 = 1.32± 0.05 C2 = 0.22± 0.02



Scalar 3D WTMM method: singularity spectra of galaxy distribution

Scalar 3D WTMM method:



Box-Counting method: singularity spectra of galaxy distribution

Box-Counting method:

Box-counting intermittency coefficients are smaller than those computed
using 3D WTMM method !!! (To be continued).



Cancellation exponent basics

Signed singular measure :

∀A, ∃B ⊂ A/µs(A)µs(B) < 0
(ex : magnetic field component, ...)

Cancellation exponent : κ = lim
ε→0

ln
∑

i
|µ(Ii,ε)|

ln(1/ε)
,

where {Ii,ε} is a tiling of measure’s support.

using the wavelet transform:

κ = −DF − τ (q = 1)
⇒ choice of the analyzing wavelet.

link to the notion of conservativity of a multiplica-
tive cascade:
κ = −DF − τ (q = 1) = ln<M>

ln b
: transfert

rate of the measure from scale a to scale a/b

conservative cascade ⇐⇒ κ = 0

non-conservative cascade ⇐⇒ κ 6= 0

0 0.5−0.5−1.0

h

D(h)



Recursive filter technics in 3D

2 4
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Gaussian filtere−x
2/2σ2

approximated by hσ(x)

(a0 cos(ω0
x
σ
) + a1 sin(ω0

x
σ
)) exp−b0

x
σ

+(c0 cos(ω1
x
σ
) + c1 sin(ω1

x
σ
)) exp−b1

x
σ

Coefficients ai, bi, ci and ωi are estimated by
minimizing the relative quadratic error:

ε2 =

∑10σ

i=1
(gσ(i)−hσ(i))2
∑10σ

i=1
gσ(i)2

4th order recursive equation:
yk = n00xk + n11xk−1 + n22xk−2 +
n33xk−3−d11yk−1−d22yk−2−d33yk−3−
d44yk−4

computing time decrease in 3D: 60 % for Gaus-
sian filter and 25 % for Mexican filter



Box-counting algorithms : multifractal measure

µ: probability measure whose support E ⊂ R
d

singularity exponent: α(x) = lim
l→0

logµ(B(l,x))
log l

method: tile support of the measure with boxes of size li = L/2i

partition functions: Sq(li) =
∑

µ(B)6=0

[

µ(B)
]q

=< µq >

multifractal spectrum: τ (q) = lim
l→0

log Sq(l)
log l

;

f(α) = D(h = α− d) = min
q

(αq − dq − τ (q))



Singularity spectra of velocity and vorticity

To each velocity v field singularity h(r0) corresponds a vorticity ω = ∇ ∧ v singularity

h(r0) − 1:

f(x0 + l) = f(x0) + (∇x)f(x0)l + ... + (∇x)nf(x0)l(n) + |l|h(x0)C(l)

∇x ∧ f(x0 + l) = ∇x ∧ f(x0) + ∇x (∇x ∧ f) (x0)l + ... + ∇n−1
x (∇x ∧ f) (x0)l

(n−1)

+ h|l|h−1ul ∧ C(l)

∧∇l
∧∇l

∧∇l

∧∇l



Mammography and breast anatomy

Goals : using WTMM method to diagnosis help
of breast cancer



What is breast cancer ?

malignant tumor of mammal gland

incidence : 30000 new case each year in France

prevention is very difficult (as opposed to lung cancer)

hereditarity : 5 to 10 % only (BRCA1/2 genes)

forecast depends on the tumoral volume at diagnosis

⇒ SCREENING using mammography



Radiological anomalies

Opacities Calcifications Architectural
distorcions



Digitalized mammographies : texture analysis

dense breasts : more difficult to diagnose

only 2 classes of monofractal properties

Digital Database for Screening Mammography:
http://marathon.csee.usf.edu/Mammography/Database.html

Dense breast Fatty breast



Application of 2D WTMM methodology in mammography

Tissue classification : dense vs fatty

Dense breast :

monofractal,H = 0.65

persitent correlations

Fatty breast :

monofractal,H = 0.30

anti-persitent correlations
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Application to digitalized mammographies

Colored Maps :
segmentation of dense h > 0.52 areas and fatty h < 0.38 areas



Application to digitalized mammographies

Colored Maps :
segmentation of dense h > 0.52 areas and fatty h < 0.38 areas



Microcalcifications detection

Segmentation of WT skeleton lines :
microcalcifications vs background texture

Background lines
Microcalcifications
almost-punctual objects behave like
’Dirac’ shapes (h = −1)



Cluster of microcalcifications

Study of microcalcification spatial distribution

Partition functions :

DF = 1.3

observation :

fractal ramification of

cluster of

microcalcifications

(1 < DF < 2) seems to be

correlated to the

pathology’s malignancy



Conclusions and prospects (1)

the 2D WTMM method provides a framework for an automated

measure of the breast radio-density and for studying the fractal

geometry of clusters of microcalcifications.

further study is necessary to validate quantitatively how far

measuring the fractal dimensionDF could improve

computer-aided diagnosis systems benign/malignant


