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A three-dimensional wavelet based multifractal method : about the need of revisiting

the multifractal description of turbulence dissipation data
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We generalize the wavelet transform modulus maxima (WTMM) method to multifractal analysis
of 3D random fields. This method is calibrated on synthetic 3D monofractal fractional Brownian
fields and on 3D multifractal singular cascade measures as well as their random function counterpart
obtained by fractional integration. Then we apply the 3D WTMM method to the dissipation field
issued from 3D isotropic turbulence simulations. We comment on the need to revisiting previous
box-counting analysis which have failed to estimate correctly the corresponding multifractal spectra
because of their intrinsic inability to master non-conservative singular cascade measures.

PACS numbers: 47.53.+n, 02.50.Fz, 05.40-a, 47.27.Gs

The multifractal formalism was introduced in the mid-
eighties to provide a statistical description of the fluctu-
ations of regularity of singular measures found in chaotic
dynamical systems [1] or in modelling the energy cascad-
ing process in turbulent flows [2, 3, 4]. Box-counting
(BC) algorithms were successfully adapted to resolve
multifractal scaling for isotropic self-similar fractals [3, 5].
As to self-affine fractals, Parisi and Frisch [6] developed,
in the context of turbulence velocity data analysis, an al-
ternative multifractal description based on the so-called
structure functions. Unfortunately, there are some draw-
backs to these classical multifractal methods and as pro-
posed in Ref. [7], a natural way of performing a unified
multifractal analysis of both singular measures and multi-
affine functions, consists in using the continuous wavelet

transform (WT). Applications of the so-called WTMM
method to 1D signals have already provided insight into
a wide variety of problems, e.g. fully-developed turbu-
lence, financial markets, meteorology, physiology, DNA
sequences [8]. Recently, the WTMM method has been
generalized to 2D for multifractal analysis of rough sur-
faces [9], and successfully applied to characterize the in-
termittent nature of satellite images of the cloud struc-
ture [10] and to assist in the diagnosis in digitized mam-
mograms [11]. Our aim here is to go one step further and
to generalize the WTMM method from 2D to 3D.

The 3D WTMM method consists in smoothing the dis-
crete 3D field data by convolving it with a filter and
then in computing the gradient on the smoothed sig-
nal as for multiscale edge detectors [12]. Define three
wavelets ψi(x, y, z) = ∂φ(x, y, z)/∂xi with xi = x, y or z
for i = 1, 2 or 3 respectively and φ(x, y, z) is a 3D smooth-
ing function well localized around x = y = z = 0. For
any function f(x, y, z) ∈ L2(R3), the WT at the point b

and scale a can be expressed in a vectorial form [9, 12]:

Tψ[f ](b, a) = ∇{φb,a ∗ f} , (1)

where φb,a(r) = a−3φ(a−1(r − b)). If φ is just a Gaus-
sian φ(r) = exp(−r

2/2) (or one of its derivatives), then
Eq. (1) defines the 3D WT as the gradient field vector of

f(r) smoothed by dilated versions φ(r/a) of this filter. At
a given scale a, the WTMM are defined by the positions
b where the WT modulus Mψ[f ](b, a) = |Tψ[f ](b, a)|
is locally maximum along the direction of the WT vec-
tor (Eq. (1)). These WTMM lie on connected surfaces
called maxima surfaces (see Fig. 2). In theory, at each
scale a, one only needs to record the position of the local
maxima of Mψ (WTMMM) along the maxima surfaces
together with the value of Mψ[f ] and the WT vector
direction. They indicate locally the direction where the
signal has the sharpest variation. These WTMMM are
disposed along connected curves across scales called max-

ima lines [9, 12] living in a 4D space (x, y, z, a). We will
define the WT skeleton as the set of maxima lines that
converge to the (x, y, z)-hyperplane in the limit a → 0+

(Fig 2(d)). One can prove [9, 12] that, provided the first
nψ moments of ψ be zero, then Mψ[f ]

(

Lr0
(a)

)

∼ ah(r0)

along the maxima line Lr0
(a) pointing to the point r0 in

the limit a→ 0+, where h(r0) (< nψ) is the local Hölder
exponent of f . As in 1D and 2D [7, 9], the 3D WTMM
method consists in defining the partition functions :

Z(q, a) =
∑

L∈L(a)

(Mψ[f ](r, a))
q
∼ aτ(q), (2)

where q ∈ R and L(a) is the set of maxima lines of the
WT skeleton. Then from Legendre transforming τ(q):
D(h) = minq

(

qh − τ(q)
)

, one gets the D(h) singularity
spectrum defined as the Hausdorff dimension of the set of
points r where h(r) is h. As an alternative strategy one
can compute the mean quantities h(q, a) and D(q, a) :

h(q, a) =
∑

L∈L(a)

ln |Mψ[f ](r, a)| Wψ[f ](q,L, a) , (3)

D(q, a) =
∑

L∈L(a)

Wψ[f ](q,L, a) ln
(

Wψ[f ](q,L, a)
)

, (4)

where Wψ[f ](q,L, a) =
(

Mψ[f ](r, a)
)q
/Z(q, a) is a

Boltzmann weight computed from the WT skeleton.
From the scaling behavior of these quantities, one
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can extract h(q) = lima→0+ h(q, a)/ ln a and D(q) =
lima→0+ D(q, a)/ ln a and therefore the D(h) spectrum.

Fractional Brownian motions (fBm) are homogenous
random self-affine functions that have been used to cal-
ibrate both the 1D and 2D WTMM methods [7, 9]. 3D
fBm BH(r) are Gaussian stochastic processes with sta-
tionary increments and well-known statistical properties
: τ(q) = qH − 3 , 0 < H < 1. In Fig. 1 are reported the
results of the 3D WTMM method when applied to 16 ×
(256)3 realizations of BH=1/2(r). As shown in Fig. 1(a),
Z(q, a) (Eq. (2)) display nice scaling behavior over 3 oc-
taves when plotted vs a in a logarithmic representation.
A linear regression fit of the data yields the linear τ(q)
spectrum shown in Fig. 2(c), in good agreement with the
theoretical spectrum. This signature of monofractality is
confirmed in Fig. 1(b) where, when plotting h(q, a) vs
log2(a), H = 1/2 is shown to provide an excellent fit of
the slope of the data (σW . a . 4σW ) for q ∈] − 2, 4[.
When using h(q, a) (Eq. (3)) and D(q, a) (Eq. (4)) to
estimate h(q) and D(q) in Fig. 1(d), one gets, up to the
numerical uncertainty, a D(h) spectrum that reduces to
a single point D(h = H = 1/2) = 3. Similar quantitative
estimates have been obtained for H = 1/3 and 2/3, thus
confirming that 3D fBm’s are nowhere differentiable with
a unique Hölder exponent h = H .

Generating multifractal measures using multiplicative
cascades is well documented [2, 3, 4]. The “binomial (or
p-) model”, originally designed to account for the sta-
tistical scaling properties of the dissipation field in fully
developed turbulence, has very simple multifractal prop-
erties [2, 3, 4]. The 3D version of the p-model consists
in starting with a cube of size L, in which a measure
µ = µL is uniformly distributed. At the first step, the
initial cube is broken into eight smaller cubes of size L/2
and one selects at random the four sub-cubes which will
receive a fraction M (1) = p1/4, the four others receiving
the fraction M (2) = p2/4 of the measure (p1 + p2 = 1).
Iterating this rule, one generates a random singular mea-
sure µn(r; l) = µL

∏n
i=1Mi , l/L = 2−n → 0. A

straightforward computation yields : τµ(q) = −(q +
2) − log2

(

pq
1 + pq

2

)

. As a mean of introducing continu-
ity, Fractionaly Integrated Singular Cascade (FISC) al-
gorithm [13] amounts to a low-pass power-law filtering in
Fourier space: fn(r) = µn(r) ∗ |r|−(1−H∗) , 0 < H∗ < 1.
This leads to FISC random functions with the follow-
ing multifractal spectrum : τf (q) = τµ(q) + qH∗ =
−2 − q(1 −H∗) − log2

(

pq
1 + pq

2

)

. In Fig. 1 are reported
the results of the 3D WTMM analysis of the FISC model
with p1 = 0.32 and H∗ = 0.638. As shown in Fig. 1(a),
Z(q, a) display good scaling for q ∈]− 2, 4[ for which sta-
tistical convergence turns out to be achieved. The corre-
sponding τf (q) spectrum is displayed in Fig. 1(c) along
with the theoretical spectrum. The agreement is quite
satisfactory; τf (q) is nonlinear, the hallmark of multi-
fractal scaling. This is confirmed in Fig. 1(b) where the
slope of h(q, a) vs log2(a) clearly depends on q. From the

FIG. 1: Multifractal analysis of 3D BH=1/2 (�), 3D p-model
(•, p = 0.32) and 3D FISC (◦, p = 0.32, H∗ = 0.638) data
using the 3D WTMM method with a first (�) or third (•,◦)
order analyzing wavelet (φ(r) is a Gaussian or its Laplacian).
(a) log

2
Z(q, a) vs log

2
a; (b) h(q, a) vs log

2
a; the dashed and

solid lines correspond to linear regression fits over the three
first octaves. (c) τ (q) vs q; the dashed and solid lines are the
theoretical predictions. (d) D(h) vs h as obtained from the
scaling behavior of h(q, a) and D(q, a). These results corre-
spond to annealed averaging over 16 × (256)3 images. a is
expressed in σW units where σW = 7 (pixels) is the charac-
teristic size of ψ at the smallest resolved scale. In (c) and (d),
the symbols (N) represent the results of classical box-counting
analysis of the 3D p-model.

estimate of h(q) and D(q), one gets the single-humped
Df (h) spectrum shown in Fig. 1(d). Note that some de-
parture from the theoretical spectrum can be observed on
the right-hand side of the D(h)-curve (q . −2) indicat-
ing that the estimate of the weakest singularities would
require a larger statistical sample. In Figs. 1(c) and 1(d)
are also reported the results of a comparative analysis of
the p-model using the 3D WTMM method and classical
BC techniques. Note that the WTMM definition of the
τWT
µ (q) spectrum (Eq. (2)) slightly differs from the BC

definition τBC
µ (q) found in the literature [3] :

τBC
µ (q) = τWT

µ (q) + dq = (q − 1)Dq , (5)

which implies the following relationship fBC
µ (α) =

DWT
µ (h = α − d) between the corresponding singular-

ity spectra (d = 3). For both methods, the numerical
results for τµ(q) and Dµ(h) are found in good agreement
with the theoretical spectra, for q ∈] − 2, 4[. In particu-
lar, the cancellation exponent [14] is found τBC

µ (q = 1) =

τWT
µ (q = 1)+3 = 0, as the signature of the conservativity

of the p-model cascading rule. One of the main problem
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with the BC method is the fact that, by construction,
the measure in a given box is the sum of the measures
in smaller non-overlapping boxes, which implies that the
cancellation exponent τBC

µ (q = 1) = 0. This means that
BC algorithms are not adapted to study non-conservative
singular cascades, signed measures as well as multifractal
functions for which the cancellation exponent has no rea-
son to vanish. Altogether the results reported in Fig. 1
bring the demonstration that our 3D WTMM methodol-
ogy paves the way from multifractal analysis of singular
measures to continuous multi-affine functions. In partic-
ular the Df (h) curve for the FISC random function is
found identical to the Dµ(h) curve up to a translation to
the right by H∗; this is the consequence of the fractional
integration which implies Df(h) = Dµ(h−H∗).

Since Kolmogorov’s founding work (K41), fully devel-
oped turbulence has been intensively studied theoreti-
cally, numerically and experimentally [3, 4]. A central
quantity in the K41 theory is the mean energy dissipation
ǫ = ν

2

∑

i,j(∂jvi+∂ivj)
2 which is supposed to be constant.

Indeed, ǫ is not spatially homogenous but undergoes lo-
cal intermittent fluctuations [3, 4]. There have been early
experimental attemps to measure the multifractal spec-
tra of ǫ [3]. Surprisingly, the binomial model turns out to
account reasonably well for the observed τǫ(q) and fǫ(α)
spectra [3]. Experimentally, single probe measurement of
the longitudinal velocity requires the use of the 1D sur-
rogate dissipation approximation ǫ′ = 15ν(∂u/∂x)2 that
may introduce severe bias in the multifractal analysis.
3D multifractal processing of dissipation data is at the
moment feasible only for numerically simulated flows at
moderate Reynolds number for which scaling just begins
to manifest itself [15]. Several numerical studies [16a,c]
agree that ǫ′ is in general more intermittent than ǫ which
is found nearly log-normal in the inertial range [16b,c].

So far mainly BC techniques have been used to per-
form multifractal analysis of numerical and experimental
dissipation data [3, 15]. Here we apply the 3D WTMM
method to isotropic turbulence DNS data obtained by
Meneguzzi with the same numerical code as in Ref. [16]
but at a (512)3 resolution and a viscosity of 5.10−4 cor-
responding to a Taylor Reynolds number Rλ = 216 (one
snapshot of the dissipation 3D spatial field). For the sake
of comparison, we will also report the results of some av-
eraging over 18 snapshots of (256)3 DNS run by Lévêque
at Rλ = 140. The main steps of our 3D WT computation
are illustrated in Fig. 2. Focusing on a (643) sub-cube,
we show the original ǫ data (Fig. 2(a)), the WTMM sur-
faces along with the WTMMM points computed at two
different scales (Figs. 2(b) and 2(c)) and some projection
of the WT skeleton (Fig. 2(d)). According to Eq. (5), by
plotting Z(q, a)/(Z(q = 0, a))q vs a in a logarithmic rep-
resentation in Fig. 3(a), one can then directly compare
(Z(q = 0, a) ∼ a−d) our WTMM computations with BC
ones. Actually, good scaling properties are observed for
q ∈] − 2, 4[. Linear regression fits of the data yield the

FIG. 2: 3D WT analysis of the DNS dissipation field ǫ. ψ is
the first-order analyzing wavelet (φ(r) is the Gaussian). (a)
Isosurface plot of ǫ in a (64)3 sub-cube. (b) WTMM surfaces
at scale a = 2σW ; from the local maxima (WTMMM) of Mψ

along these surfaces originate a black segment whose length
is proportional to Mψ and direction is along the WT vector.
(c) same as in (b) for a = 4σW . (d) 3D projection of the WT
skeleton obtained by linking the WTMMM across scales.

non-linear τǫ(q) spectra shown in Fig. 3(c) that signifi-
cantly deviate from a straight line, the hallmark of mul-
tifractality. But surprisingly, τWT

ǫ (q) significantly differs
from τBC

ǫ (q) − 3q. Actually, our 3D WTMM algorithms
reveal that the cancellation exponent [14] is significantly
different from zero : τWT

ǫ (q = 1)+3 = −0.19± 0.03 < 0,
the signature of a signed measure. Indeed, as shown
in Fig. 3(c), τWT

ǫ (q) data are rather nicely fitted by
the theoretical spectrum τµ(q) of the non-conservative
p-model with p1 = 0.36 and p2 = 0.78 (p1 + p2 =
1.14 > 1). Thus BC algorithms systematically provide
a misleading conservative τǫ(q) spectrum diagnostic with
p = p1/(p1 + p2) and 1 − p = p2/(p1 + p2). As shown
in Fig. 3(c), τBC

ǫ (q) − 3q data are quite well reproduced
by the theoretical conservative p-model spectrum with
p = 0.32 = p1/(p1 + p2) = 0.36/1.14, consistently with
our 3D WTMM finding for τWT

ǫ (q). The difference be-
tween the two spectra is nothing but a fractional integra-
tion of exponent H∗ = log2(p1 + p2) ∼ 0.19. This result
is confirmed in Fig. 3(d) where the singularity spectrum
fBC

ǫ (α) is misleading shifted to the right by H∗ (= − the
cancellation exponent) ∼ 0.19, without any shape change
as compared to the fWT

ǫ (α) = DWT
ǫ (h = α − d). Note

that the observation that fWT
ǫ (α − d + 1) is not tan-

gent to the diagonal (on the contrary to fBC
ǫ (α− d+ 1))

is clearly related to the fact that the cancellation expo-
nent is different from zero [17]. This observation seriously
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questions the validity of most of the experimental and nu-
merical BC estimates of the τBC

ǫ (q) and fBC
ǫ (α) spectra

reported so far in the literature. In Fig. 3(d) is shown
for comparison some average fBC

ǫ (α) spectrum obtained
by Meneveau and Sreenivasan [3] for 1D surrogate dissi-
pation experimental data (d = 1). We notice that these
experimental data were claimed to be well fitted by the
conservative p-model with p = 0.3 (1 − p = 0.7), i.e. a
value not so far from the value p = p1/(p1 + p2) = 0.32
derived from our 3D WTMM method.

Previous application of the 1D WTMM method to 1D
surrogate dissipation data has already revealed the fact
that the cancellation exponent might be different from
zero [18]. The 3D WTMM results reported here show
that this surprising result is not some artefact resulting
from the analysis of 1D cuts (the dissipation could well
be non conserved along these cuts), but that the mul-
tifractal spatial structure of the 3D dissipation field is

FIG. 3: Multifractal analysis of Meneguzzi DNS dissipation
data (d = 3) using the 3D WTMM method (△) and BC
techniques (N). (a) log

2
(Z(q, a)/(Z(q = 0, a))q) vs log

2
a;

(b) h(q, a) = α(q, a) − 3 vs log
2
a; the solid and dashed lines

correspond to linear regression fits over σW . a . 23σW .
(c) τǫ(q) = τWT

ǫ (q) or τBC
ǫ (q) − 3q vs q; the solid (dashed)

lines correspond to the p-model prediction with p1 = 0.36,
p2 = 0.78 (p1 = 0.32, p2 = 0.68). (d) fǫ(α) + 3 − d vs
α−d+1, where fǫ(α) = fBC

ǫ (α) or fWT
ǫ (α) = DWT

ǫ (h = α−d)
; the solid and dashed lines have the same meaning as in
(c); the thick solid line is the log-normal spectrum fǫ(α) =
d − (α − d + 1 − C1)

2/2C2 with C1 = 0.91 and C2 = 0.22.
The symbols (�) correspond to some average f(α) spectrum
of experimental (d = 1) surrogate dissipation data [3]. In (c)
and (d), the 3D WTMM multifractal spectra of Lévêque 3D
dissipation data (18 snapshots) (◦) are shown for comparison.
In (d) the dashed straight line is the diagonal.

likely to be well described by a multiplicative cascade

process that is definitely non conservative. As shown in
Fig. 3(d), this conclusion is confirmed by the results ob-
tained when averaging over 18 snapshots of Lévêque’s
DNS; the cancellation exponent is found even more neg-
ative τWT

ǫ (q = 1) + 3 = −0.26, as an indication (as re-
gards to the smaller Rλ value) that this exponent might
decrease to zero in the limit of infinite Reynolds number.
To conclude, let us point out that the fWT

ǫ (α) data seem
to be even better fitted by a parabola, as predicted for
non-conservative log-normal cascade processes.

We are very grateful to M. Meneguzzi and E. Lévêque
for allowing us to have access to their DNS data and to
the CNRS under GDR turbulence.
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