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Abstract: Box Counting Dimension is an approximation of the theoretical Fractal Dimension. In this paper we 
use Box-Counting type methods in order to analyze CT and MR brain images. We first developed a computer 
application offering several tools, most of them based on Box Counting methods and variations for 2D and 3D 
structures. The conclusion is that the proposed algorithms can be used as medical tools to help the diagnosis 
process. 
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INTRODUCTION 

 
The use of fractal analysis is a known technique in clinical science. Particularly, the Fractal Dimension of  

various areas of tissues may help the process of diagnosis ([1],[2],[3],[4],[5]). 
In this paper we propose an algorithm similar to Box Counting that provides helpful information to 

process CT and MR images and can be easily used as a base for developing an expert system. 
 
1. FRACTAL DIMENSION AND BOX-COUNTING DIMENSION 

 
The main ideas of fractal dimensions belong to Hausdorff. We give a brief introduction on what is usually 

known as Hausdorff dimension of a set embedded in the n-dimensional Euclidian space ([6]) 
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The s -dimensional Hausdorff measure of A  is )(lim)( 0 AhAh ss
εε →=  .  It can be proved that there is 

a number )(ADH  such that ∞=)(Ahs  if  )(ADs H<  and  0=sh  if )(ADs H> . The number )(ADH   
is the Hausdorff dimension of A  and it can be zero, infinite or a a positive real number. We have also  
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We give in the following some basic properties of the Hausdorff dimension: 
(1) If nA ℜ⊂  then nADH ≤)( . 

(2) If BA ⊂  then )()( BDAD HH ≤ . 

(3) If A  is a countable set then 0)( =ADH . 

(4) If  1)( <ADH  then A  is totally disconnected. 
(5) The Hausdorff dimension of the Cantor set is log 2 / log 3,  of the Sierpinski Gasket is log 3 / log 2 

and of Sierpinski Carpet is log 8 / log  3. 



 
There are major difficulties in evaluating the Hausdorff dimension in particular cases. For this reason 

there are simpler methods to approximate the Hausdorff dimension. One of the most efficient is the Box 
Counting method, ([6]). 

Let us consider a picture (structure). We cover the structure with a number of square boxes of size s. We 
count the number of the boxes which contain some part of the structure and let N(s) be this number. Clearly, if 
we increase the number of boxes or, equivalently, we decrease s to p, we obtain N(p). After this we make a 
diagram, on the Ox-axis  we measure –log(s)  and on Oy-axis we measure log(N(s)). In this way we obtain 
several points for different values of s. The Box Counting Dimension of the structures is defined as the slope of 
the regression line defined by the points on the diagram. The Box Counting Dimension is a good approximation 
of the Hausdorff Dimension (Fractal Dimension). 

 
 

2. THE ALGORITHMS 
 

We have implemented some box counting-type algorithms adapted to work with CT and MR images. 
First we have developed a classical Box Counting  algorithm which can be applied on binary images of any size 
just for testing purposes. We have obtained very satisfactory results on some classical fractals. 
As a sample we give below the results of our implementation for the Sierpinski Gasket and Sierpinski Carpet: 

 
                Sierpinski Gasket                                                                                     Regression Line 
The fractal dimension of the Sierpinski Gasket is log 3 / log 2 ≈ 1.5850 
 

 
                       Sierpinski Carpet                                                                              Regression Line    
 
The fractal dimension of the Sierpinski Carpet is log 8 / log 3 ≈ 1.8928 
 



Due to the fact that CT and MR images are both in gray-scale, the application of the previous Box 
Counting algorithm requires a binary filtering of the initial image into a black/white one. We also developed 
several filters, including color filters. Obviously, by applying different methods of filtering one obtain different 
results of the Box Counting Dimension for the same image.  

We give below a sample of  filtered brain image analyzed with the previous Box Counting algorithm. 

          MR Brain image     Filtered brain image.  Fractal Dimension =  1.735… 
 
In order to avoid the loose of information from initial image after filtering, we propose in this paper a Box 

Counting-like algorithm which can be applied on a gray-scale image. This algorithm is based on the fact that in 
the CT and MR images a higher density of the tissue is equivalent with lighter gray. Our idea was to associate to 
every pixel a weight proportional to its gray level. We resume the essential of the algorithm below. 

Let us consider a brain image. We cover the image with square boxes as in the standard Box Counting 
algorithm. Let ks  be the size of the box used in covering at step k  (therefore we have to compute )( ksN  at this 

step). Let ),( yx  be the coordinate of the upper-left corner of one of these boxes (let this be the box k
tB ). We 

now define k
tm  as the maximum of the weight values of the pixels contained in this box. 

]}])1,1[],([),(|max{ , ZZsysxyxjiwm kkji
k
t ×∩−+−+×∈=  

where jiw , is the weight associated to the pixel at coordinates ),( ji . 
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Next, the computation formula for D is the similar to the one in the classical algorithm. In this case, D will have 
a value in the [0,3] interval. 

We shall refer to the number D as the Weighted Box Counting Dimension or WBCD. 
The following picture is a spatially representation of the volume to which essentially a 3D classical Box 

Counting algorithm is applied: 
 

                  Original sample image                          Spatial view of the image                            Two steps in WBCD computation 



3. APPLICATIONS TO CT AND MR BRAIN IMAGES 
 

 
Let us consider a brain image and let A be a pixel on this picture. Let K be a square centered at A. By 

using the previous algorithm we compute the WBCD of the square K and we associate a color to the pixel A 
according to this WBCD (the function which associates the color is a key part of the algorithm). In this way we 
obtain a map of level lines (we shall refer to this map as the Color Classification Map or CCM). This leads to a 
classification of different tissues according to the associated color. The use of the CCM in diagnosis requires a 
database with sufficient images. A new image is diagnosed by an expert system that compares the Color 
Classification Maps. 

To show the idea behind Color Classification Map, we shall apply the described algorithm on pictures 
containing some known fractals. Different structures must have different colors.  

 

     
                   Two fractals (two different type of tissues one mixed with another)                                       CCM of the selected area. 
                                                                                                                                                   Discontinuities and “parasite zones” are caused 
                                                                                                                                                             by poor original image resolution 

 
We notice that CCM reveals two types of fractals (tissues) in the analyzed image. 
Next, we make the CCM of a random area from a Julia Fractal: 

  

    
 
      In the above sample the left picture is a Julia set. The second picture shows the CCM of the selected area. 
In the third picture we made in the original structure some “anomalies” (scaled parts from itself have been 
added). The associated CCM is strongly non-homogenous, revealing the perturbation. The most important fact is 
that on the “real” image the perturbation is not evident, while on the associated CCM the perturbation becomes 
obvious.  



              
 
This is another example of the same type as above, but the perturbation is of a “parasite” type, i.e. the 

new structure belongs to another fractal. (We simply used a spray tool to insert some extra white pixels in the 
image). 

In the following we present several brain images and their associated CCM’s. One can notice that the 
CCM reveals the “modified” structures  (tumors), if any.  

 

 
 

       
CCM’s at different parameters (this parameters can be use in analysis too) 

 

           
Note: There is a horizontal line of random white pixels somewhere at the bottom of the image. That line belongs to the original MR image 
(probably a capture error) and produces an anomaly in the CCM around it also. 
 



             
We notice different tissues with different WBCD on the CCM 

 
CONCLUSIONS 
 
 

The method of the Color Classification Map is a useful tool that can help in the process of the diagnosis. 
During the study the authors observed that some significant details of CT or MR images which were “invisible” 
on the initial image became obvious on the CCM’s. More precisely, interesting modifications (pathological or 
not) which were not detected on the real image, became clearly distinct zones on CCM simply because of the 
their Fractal Dimension (WBCD) was different. This simple fact requests a further medical investigation of that 
zone which could improve the diagnosis.  

We are currently developing an expert system designed to be an assistant for the diagnosis process. It will 
be also capable to provide a diagnosis based on MR or CT images, the associated CCM’s and some CCM’s 
information synthesis algorithms. 

The authors observed some interesting relations between the aspect of the boundaries of the areas in the 
CCM and the evolution of the associated tissues (in particular, tumors). This will be the objective of a further 
application 
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