Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity

 number: 113
Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}2 & 0 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & -1 & 0\end{array}\right)$.

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}0 & -2 & 3 & -4\end{array}\right),\left(\begin{array}{llll}1 & 0 & -2 & 2\end{array}\right),\left(\begin{array}{llll}1 & -2 & 1 & -2\end{array}\right),\left(\begin{array}{llll}0 & -4 & 3 & -1\end{array}\right),\left(\begin{array}{llll}1 & 2 & -2 & -1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n-tuple) (-8 46) is a linear combination of the vectors ($\left.\begin{array}{lll}0 & 2 & 2\end{array}\right),\left(\begin{array}{lll}1 & 0 & -2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:

$$
\left(x+\left(\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right)\right) \cdot\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
-2 & 2 \\
0 & 0
\end{array}\right)
$$

1) $\left(\begin{array}{cc}-2 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{cc}* & -1 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & a & -1 \\ 1 & 1 & 0 & 2\end{array}\right)$ has determinant 7?

1) -2
2) -4
3) -5
4) 4 5) 5

Exercise 6

Find the solution of the linear system

$$
\begin{aligned}
& 3 x_{1}-5 x_{2}+3 x_{3}-5 x_{4}=-2 \\
& -2 x_{1}-2 x_{2}+2 x_{3}-3 x_{4}==4 \\
& 7 x_{1}-x_{2}-x_{3}+x_{4}=-10
\end{aligned}
$$

taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}3 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ 17 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -7 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}4 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-4 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -3 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -8\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}0 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ 12\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -4\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}5 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 6 \\ ? \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}? \\ ? \\ ? \\ 18\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ 20 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -7 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

| | Feed of company 1 | Feed of company 2 | Feed of company 3 | Feed of compa |
| :--- | :--- | :--- | :--- | :--- | :--- |
| animal flours | 19 K | 4 K | 12 K | 10 K |
| vegetable flours | 6 K | 2 K | 4 K | 3 K |
| fish flours | 31 K | 5 K | 19 K | 17 K |

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours		
136 K	44 K	fish flours 221 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 11.

1) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
4) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 4501

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}-1 & 1 & -3 & -2 \\ 1 & 0 & 2 & 0 \\ 2 & -2 & 5 & 2 \\ 1 & -1 & 2 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -6 & 3 & 2 \\ 1 & ? & 1 & 1 \\ 4 & -5 & ? & 1 \\ -2 & 3 & -1 & ?\end{array}\right) \quad$ 2) $\left(\begin{array}{cccc}? & -3 & 0 & 2 \\ 1 & ? & 0 & -1 \\ 1 & 1 & ? & -1 \\ -2 & -3 & 1 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -2 & -2 & 3 \\ 0 & ? & 0 & 1 \\ -1 & 1 & ? & -1 \\ -3 & 2 & 2 & ?\end{array}\right)$
3)

$\left.\left.\left(\begin{array}{cccc}? & 1 & -2 & 4 \\ -1 & ? & -1 & 0 \\ 0 & 0 & ? & -2 \\ -1 & 0 & -1 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & -1 & -2 \\ 1 & ? & 0 & 0 \\ 1 & 0 & ? & -1 \\ -2 & -2 & -4 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & -1 & 0 \\ 3 & ? & 2 & 2 \\ -3 & -1 & ? & -2 \\ -5 & -1 & -3 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & -1 & 0 & 1 \\ 0 & ? & 0 & -1 \\ 7 & 0 & ? & 5 \\ 3 & 0 & 1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)

$$
\begin{aligned}
& \left(\begin{array}{lllll}
-4 & -1 & -1 & 2 & -1
\end{array}\right),\left(\begin{array}{lllll}
-2 & -1 & -2 & 0 & -2
\end{array}\right), \\
& \left(\begin{array}{lllllll}
0 & 2 & -1 & 0 & 0
\end{array}\right),\left(\begin{array}{lllll}
2 & 0 & -1 & -2 & -1
\end{array}\right),\left(\begin{array}{ll}
-2 & -3
\end{array}-1 \begin{array}{ll}
-2
\end{array}\right),
\end{aligned}
$$

are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n-tuple) (-45512$)$ is a linear combination of the vectors $\left(\begin{array}{llll}-1 & -2 & -1 & -2\end{array}\right),\left(\begin{array}{llll}0 & 2 & -1 & 0\end{array}\right),\left(\begin{array}{llll}-2 & -4 & -2 & -4\end{array}\right)$
, ($\left.-2 \begin{array}{lll}-4 & -1 & -4\end{array}\right),\left(\begin{array}{llll}-2 & -4 & 0 & -4\end{array}\right),\left(\begin{array}{llll}-1 & -2 & 0 & -2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \cdot X+\left(\begin{array}{ccc}0 & 0 & 1 \\ -2 & 1 & 0 \\ -1 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & -1 & 2 \\ -3 & 2 & -1 \\ 0 & -1 & -1\end{array}\right)$

1) $\left(\begin{array}{ccc}-2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{ccc}* & -2 & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}* & * & -2 \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{ccc}* & * & * \\ -1 & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & * & * \\ * & 1 & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-2 & -1 & 1 & 0 \\ a & -1 & 1 & -2 \\ 2 & 0 & 1 & 1 \\ 1 & 2 & -1 & 0\end{array}\right)$ has determinant -8 ?

1) -5
2) -4
3) 4
4) -1
5) -2

Exercise 6

Find the solution of the linear system
$8 x_{1}+10 x_{2}-4 x_{3}-10 x_{4}-2 x_{5}+4 x_{6}=-2$
$-4 x_{1}-4 x_{2}+x_{3}+5 x_{4}+x_{5}+2 x_{6}=5$
$-x_{1}-2 x_{2}+x_{3}+5 x_{4}-4 x_{6}=-1$
$x_{1}+x_{2}-5 x_{4}=-3$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say,
apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ ? \\ 1 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ 17 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 2 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}4 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ ? \\ 8 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ ? \\ -6\end{array}\right),\left(\begin{array}{c}? \\ -10 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ ? \\ -7\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 2 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ -1 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ 17 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 1 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -3 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 0 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-10 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}1 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -6 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours
Feed of company $1 \quad 2 \mathrm{~K} \quad 7 \mathrm{~K}$
Feed of company $2 \quad 1 \mathrm{~K} \quad 0 \mathrm{~K} \quad 1 \mathrm{~K}$
Feed of company 3 0K 2K 1 K
Feed of company $4 \quad 1 \mathrm{~K} \quad 6 \mathrm{~K}$ 4K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours		
10K	36 K	fish flours 28 K

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 13.

1) Feed $1=$?, Feed $2=3$, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=3$, Feed $4=$?
3) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
5) Feed $1=$?, Feed $2=1$, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity

 number: 187462
Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}5 & 1 & -4 & 1 \\ -9 & 0 & 7 & -1 \\ 3 & -2 & -2 & -1 \\ -5 & 1 & 4 & 0\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -6 & -9 & 6 \\ -1 & ? & -2 & 2 \\ 0 & -1 & ? & 1 \\ -2 & -2 & -3 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -2 & 1 & 3 \\ 3 & ? & 1 & 0 \\ -2 & -3 & ? & 4 \\ -5 & -4 & -2 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -2 & -6 & -4 \\ 0 & ? & -2 & 0 \\ 0 & 1 & ? & 2 \\ 0 & -1 & -2 & ?\end{array}\right)$ 4)
$\left(\begin{array}{cccc}? & -2 & -2 & 0 \\ 3 & ? & -1 & 1 \\ 1 & -1 & ? & 0 \\ 2 & 1 & 2 & ?\end{array}\right) \quad$ 5) $\left(\begin{array}{cccc}? & -1 & -2 & 0 \\ -4 & ? & -1 & 2 \\ 2 & 1 & ? & 0 \\ -3 & -1 & -2 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & -1 & -1 \\ 1 & ? & 0 & 0 \\ 1 & 0 & ? & 2 \\ 0 & 0 & 0 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & -2 & 5 \\ -1 & ? & 0 & 2 \\ 2 & 0 & ? & -4 \\ -2 & -1 & -1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-2 & 0 & -1 & 2 & -1\end{array}\right),\left(\begin{array}{lllll}2 & 0 & 1 & -1 & 0\end{array}\right),\left(\begin{array}{lllll}-4 & 0 & -2 & 3 & -1\end{array}\right),\left(\begin{array}{lllll}-1 & -2 & 2 & 1 & -2\end{array}\right),\left(\begin{array}{lllll}-1 & 1 & 1 & 1 & 1\end{array}\right)$, are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n-tuple) ($2-8500)$ is a linear combination of the vectors $\left(\begin{array}{llll}-3 & 1 & 3 & -3\end{array}\right),\left(\begin{array}{llll}-2 & 2 & 1 & -1\end{array}\right),\left(\begin{array}{llll}-1 & -1 & 2 & -2\end{array}\right),\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right) \cdot X-\left(\begin{array}{ccc}1 & -2 & -2 \\ 0 & 2 & 1 \\ 0 & 1 & 1\end{array}\right)=\left(\begin{array}{ccc}0 & 3 & 3 \\ 0 & -4 & -1 \\ 0 & 0 & 0\end{array}\right)$

1) $\left(\begin{array}{ccc}-2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{ccc}* & -2 & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & * & 0 \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & 1 & 1 & 0 \\ -2 & -1 & -4 & 2 \\ 2 & -1 & -3 & 1 \\ a & 1 & -2 & 1\end{array}\right)$ has determinant 6?

1) 5 2) $0 \quad$ 3) 3 4) 1 5) 2

Exercise 6

Find the solution of the linear system
$x_{1}-22 x_{2}+16 x_{3}+x_{4}-2 x_{6}=-4$
$-x_{1}-10 x_{2}+7 x_{3}-8 x_{4}-9 x_{5}-9 x_{6}==0$
$-x_{1}+25 x_{2}-18 x_{3}+2 x_{4}+x_{5}-4 x_{6}==5$
$-x_{1}+15 x_{2}-11 x_{3}-3 x_{4}-2 x_{5}+x_{6}=3$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ -5 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -10 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -2 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -8 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 2 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}3 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 0 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -15 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -1 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 45 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$4)\left(\begin{array}{c}? \\ ? \\ ? \\ -1 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -8 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 1 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-16 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ ? \\ 2\end{array}\right)+\left\langle\left(\begin{array}{c}-6 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-7 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 43 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours

Feed of company $1 \quad 5 \mathrm{~K} \quad 2 \mathrm{~K} \quad 4 \mathrm{~K}$
Feed of company $2 \quad 7 \mathrm{~K}$ 3K 6K
Feed of company $3 \quad 2 \mathrm{~K} \quad 1 \mathrm{~K} 3 \mathrm{~K}$

Feed of company $4 \quad 7 \mathrm{~K} \quad 3 \mathrm{~K}$ 2K
The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours	fish flours	
74 K	31 K	54 K

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12 .

1) Feed $1=3$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=4$, Feed $3=$?, Feed $4=$?
3) Feed $1=5$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=3$, Feed $3=$?, Feed $4=$?
5) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity

 number: 550273
Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & -3 & 2 & 2\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -6 & -1 & 0 \\ 1 & ? & 3 & 3 \\ -1 & -5 & ? & -2 \\ -1 & -6 & -2 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & 0 & 0 & 0 \\ 0 & ? & 2 & -1 \\ 0 & -1 & ? & 0 \\ 0 & 1 & 3 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -4 & 5 & -2 \\ 0 & ? & -2 & 1 \\ 0 & -1 & ? & -1 \\ 0 & -2 & 2 & ?\end{array}\right)$ 4)
$\left.\left(\begin{array}{cccc}? & -2 & -3 & 0 \\ 1 & ? & -1 & 0 \\ 1 & -1 & ? & 0 \\ -1 & 1 & 3 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & -1 & 0 \\ -2 & ? & -1 & 2 \\ -1 & 0 & ? & 0 \\ 2 & -1 & 0 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 1 & -1 \\ 1 & ? & -1 & 1 \\ 0 & -2 & ? & -1 \\ -1 & -2 & 5 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & 1 & 4 \\ 1 & ? & 0 & 1 \\ 4 & 2 & ? & 4 \\ 1 & -2 & 1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-1 & 0 & 2 & 0 & -1\end{array}\right),\left(\begin{array}{lllll}-2 & 2 & -2 & 1 & 2\end{array}\right),\left(\begin{array}{lllll}1 & 2 & 2 & -1 & 2\end{array}\right)$
, ($\left.1 \begin{array}{lllll}1 & -2 & 2 & -1\end{array}\right),\left(\begin{array}{lllll}-3 & 0 & -4 & 2 & 0\end{array}\right),\left(\begin{array}{lllll}1 & 0 & -1 & -2 & -2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5
6) 6

Exercise 3

Check whether the vector (n-tuple) (1 -5 -2 -4) is a linear combination of the vectors $\left(\begin{array}{llll}-4 & 3 & -1 & 2\end{array}\right),\left(\begin{array}{llll}-4 & 4 & 0 & 4\end{array}\right),\left(\begin{array}{llll}-1 & -2 & -1 & 1\end{array}\right),\left(\begin{array}{llll}-2 & 2 & 0 & 2\end{array}\right),\left(\begin{array}{llll}2 & -1 & 1 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \cdot\left(X+\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & -1 & 1
\end{array}\right)\right)=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & -1 & 2 \\
4 & -2 & 1
\end{array}\right)
$$

1) $\left(\begin{array}{ccc}-2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}2 & * & \star \\ \star & \star & \star \\ \star & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & * & 0 \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & * & 1 \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & -1 & 2 & -1 \\ -2 & 1 & a & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1\end{array}\right)$ has determinant -7 ?

1) 4
2) 2
3) 1
4) -2
5) -1

Exercise 6

Find the solution of the linear system
$-5 x_{1}+x_{2}+x_{3}-x_{4}=-5$
$-3 x_{1}+x_{3}-x_{4}=1$
$4 x_{1}-x_{2}-x_{3}+2 x_{4}=2$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ -6 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 2 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ ? \\ -9\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -8 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -6\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -5 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ -2 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -2\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -6\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ ? \\ -3 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 7 \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}? \\ ? \\ -5 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 3 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	1 K	6 K	2 K
Feed of company 2	8 K	11 K	5 K
Feed of company 3	3 K	5 K	2 K
Feed of company 4	6 K	9 K	4 K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours	fish flours	
55 K	90 K	38 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=2$, Feed $4=$?
4) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=5$, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity

 number: 2959749
Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}3 & 0 & 2 & 0 \\ -3 & 2 & -2 & -1 \\ 4 & 0 & 3 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -8 & -4 & 5 \\ 0 & ? & 1 & -1 \\ 0 & 1 & ? & -1 \\ 0 & -7 & -3 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -7 & -4 & 5 \\ 1 & ? & -1 & 2 \\ -4 & 3 & ? & -2 \\ 2 & -2 & -1 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & -5 & -3 & 2 \\ 0 & ? & 1 & -2 \\ 0 & -1 & ? & 0 \\ 0 & 2 & 2 & ?\end{array}\right)$
4)

$\left(\begin{array}{cccc}? & 0 & -2 & 0 \\ 0 & ? & 0 & 1 \\ -4 & 0 & ? & 0 \\ -1 & -1 & 0 & ?\end{array}\right) \quad$ 5) $\left.\left(\begin{array}{cccc}? & -2 & -1 & -1 \\ -1 & ? & 0 & 0 \\ 0 & 3 & ? & 2 \\ 1 & 2 & 1 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -2 & 0 & -1 \\ -1 & ? & 0 & 2 \\ 0 & -1 & ? & 0 \\ 3 & 1 & 0 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -2 & 0 & -1 \\ 3 & ? & 1 & -1 \\ 1 & 0 & ? & 0 \\ -2 & 4 & 0 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}-4 & -2 & -2 & 2\end{array}\right),\left(\begin{array}{llll}-2 & -1 & -1 & 1\end{array}\right),\left(\begin{array}{llll}0 & 1 & 0 & -2\end{array}\right),\left(\begin{array}{llll}-1 & 2 & 2 & 0\end{array}\right),\left(\begin{array}{llll}-2 & 0 & -1 & -1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n-tuple) (-7 65) is a linear combination of the vectors $\left(\begin{array}{lll}2 & -1 & 2\end{array}\right),\left(\begin{array}{lll}0 & -1 & 4\end{array}\right),\left(\begin{array}{lll}2 & 0 & -2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:

$$
\left(X-\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\right) \cdot\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
-2 & -1 \\
0 & -1
\end{array}\right)
$$

1) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{cc}* & -1 \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}* & 1 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{ll}* & 2 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}a & -2 & -1 & 1 \\ -1 & 0 & 1 & 1 \\ 2 & 0 & 2 & 1 \\ -1 & 1 & 3 & 2\end{array}\right)$ has determinant -7 ?

1) -1
2) -4
3) 4
4) -3
5) 3

Exercise 6

Find the solution of the linear system
$2 x_{1}+x_{2}-2 x_{3}-2 x_{4}=-4$
$3 x_{1}+2 x_{2}-3 x_{3}+x_{4}=-4$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ 0 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 0 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -8 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ -5 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -1\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ 2 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -5 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 6 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -1\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}9 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 2 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}7 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{l}? \\ ? \\ 1 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -9 \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	$4 K$	$1 K$	$6 K$
Feed of company 2	$3 K$	$2 K$	$6 K$
Feed of company 3	$2 K$	$2 K$	$5 K$
Feed of company 4	$2 K$	$1 K$	$4 K$

The experts of the livestock farm determined
that every week each animal needs the following composition:

| animal flours vegetable flours | |
| :--- | :--- | :--- |
| 27 K | l fish flours |
| 51 K | |

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 4 to be equal to 4 .

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=4$
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
3) Feed $1=$?, Feed $2=2$, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
5) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity

 number: 3180328
Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}3 & -1 & 0 & 2 \\ 1 & 0 & 0 & 1 \\ 2 & -1 & 0 & 2 \\ 1 & -2 & -1 & 1\end{array}\right)$.

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 2\end{array}\right),\left(\begin{array}{lllll}-1 & -1 & -2 & 2 & 1\end{array}\right),\left(\begin{array}{lllll}-2 & 2 & -1 & 2 & 2\end{array}\right),\left(\begin{array}{lllll}-2 & -2 & 1 & 2 & 2\end{array}\right),\left(\begin{array}{lllll}-4 & 0 & 0 & 4\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n -tuple) ($\left.\begin{array}{lllll}-6 & -8 & 5 & 7\end{array}\right)$ is a linear combination of the vectors

$$
\left(\begin{array}{llll}
2 & 0 & -1 & -1
\end{array}\right),\left(\begin{array}{llll}
0 & -2 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
-1 & 2 & 1 & 2
\end{array}\right),\left(\begin{array}{cccc}
-2 & -1 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
-3 & 1 & 2
\end{array}\right),
$$

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:

$$
\left.\left.\left.\left.\begin{array}{l}
\left(\begin{array}{ccc}
1 & -2 & -1 \\
-1 & 2 & 0 \\
1 & -1 & 1
\end{array}\right)^{-1} \cdot X-\left(\begin{array}{ccc}
1 & -1 & -1 \\
2 & -1 & -1 \\
0 & -1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -4 \\
-1 & 0 & -2 \\
-1 & 2 & 2
\end{array}\right) \\
1\left(\begin{array}{lll}
1 & * & * \\
* & * & * \\
* & * & *
\end{array}\right)
\end{array} \quad 2\right)\left(\begin{array}{ccc}
-1 & * & * \\
* & * & * \\
* & * & *
\end{array}\right) \quad 3\right)\left(\begin{array}{ccc}
2 & * & * \\
* & * & * \\
* & * & *
\end{array}\right) \quad 4\right)\left(\begin{array}{ccc}
* & -1 & * \\
* & * & * \\
* & * & *
\end{array}\right) \quad 5\right)\left(\begin{array}{lll}
* & 2 & * \\
* & * & * \\
* & * & *
\end{array}\right) . \begin{aligned}
& *
\end{aligned}
$$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ -1 & 1 & -1 & -1 \\ 2 & -1 & a & 1 \\ 0 & 0 & 2 & 1\end{array}\right)$ has determinant -4 ?

1) -5
2) - 3
3) -4
4) 4 5) 0

Exercise 6

Find the solution of the linear system
$-3 x_{1}+5 x_{2}-3 x_{4}-4 x_{5}-2 x_{6}==6$
$x_{1}-2 x_{2}-5 x_{3}+x_{4}+2 x_{5}+x_{6}=0$
$-x_{1}+4 x_{2}-5 x_{3}+x_{4}+3 x_{5}+x_{6}=3$
$-x_{1}-x_{2}-3 x_{4}-5 x_{5}-2 x_{6}=3$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 3 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -10 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ ? \\ 1 \\ ? \\ ? \\ ?\end{array}\right)$
$3)\left(\begin{array}{c}? \\ ? \\ -3 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ ? \\ -3\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -9 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -11 \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ 1 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -2 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -5 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -1 \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{c}-9 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ ? \\ 1\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -2 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ ? \\ 8\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -4 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours
Feed of company 1 15K 5K 12K
Feed of company 2 21K 7K 17K
Feed of company 3 19K 6K 15K
Feed of company $4 \quad 17 \mathrm{~K} \quad 4 \mathrm{~K} \quad 12 \mathrm{~K}$

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	
38 K	12 K	fish flours
30 K		

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 4 to be equal to 0 .

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
2) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?
5) Feed $1=$?, Feed $2=3$, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 6548030

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}2 & 3 & 0 & -3 \\ 1 & 2 & 0 & -2 \\ 0 & -1 & 1 & 1 \\ -2 & -4 & 2 & 5\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -5 & -3 & -1 \\ -1 & ? & 1 & 0 \\ -2 & 5 & ? & 2 \\ -1 & 2 & 1 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -5 & 3 & 0 \\ -1 & ? & -5 & 1 \\ -3 & 4 & ? & -1 \\ 0 & 1 & -2 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & -3 & 0 & 0 \\ 1 & ? & -2 & 1 \\ -1 & 2 & ? & 0 \\ 2 & -2 & -2 & ?\end{array}\right) \quad$ 4)
$\left.\left.\left(\begin{array}{cccc}? & -2 & 0 & 0 \\ -1 & ? & 1 & 2 \\ 0 & 0 & ? & 0 \\ 0 & 0 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & 0 & -1 \\ -2 & ? & 2 & -4 \\ 0 & -1 & ? & 0 \\ 1 & -1 & -2 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & 2 & -3 \\ -3 & ? & 4 & -3 \\ -2 & -1 & ? & -2 \\ -2 & -2 & 3 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & -1 & 2 & -1 \\ -2 & ? & -1 & 1 \\ -2 & 3 & ? & 0 \\ 2 & -3 & 2 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}2 & 0 & -2 & -1\end{array}\right),\left(\begin{array}{llll}0 & -1 & -1 & -1\end{array}\right),\left(\begin{array}{llll}-2 & 1 & 0 & -2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3

Exercise 3

Check whether the vector (n-tuple) (9 $\left(\begin{array}{lll}-3 & -1 & -3\end{array}\right),\left(\begin{array}{lll}-1 & -1 & -2\end{array}\right),\left(\begin{array}{lll}-2 & 0 & -1\end{array}\right),\left(\begin{array}{lll}-4 & 0 & -2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation: $\left(\begin{array}{ll}-4 & 1 \\ -5 & 1\end{array}\right) \cdot X \cdot\left(\begin{array}{cc}-1 & -1 \\ 3 & 2\end{array}\right)^{-1}=\left(\begin{array}{ll}15 & 6 \\ 20 & 8\end{array}\right)$

1) $\left(\begin{array}{cc}-2 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}0 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$ 5) $\left(\begin{array}{cc}* & -2 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}0 & -2 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ -2 & a & 1 & 0 \\ 1 & 1 & -2 & -2\end{array}\right)$ has determinant -9 ?

1) 1
2) 3
3) -5
4) -3
5) 0

Exercise 6

Find the solution of the linear system

$$
\begin{aligned}
& -3 x_{1}-x_{2}+9 x_{3}-2 x_{4}==3 \\
& 5 x_{1}-2 x_{2}-4 x_{3}+x_{4}==0 \\
& -2 x_{1}+3 x_{2}-5 x_{3}+x_{4}=-=-3
\end{aligned}
$$

taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left.\left(\begin{array}{c}10 \\ ? \\ ? \\ ?\end{array}\right)+\left(\begin{array}{l}? \\ ? \\ 2 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -2 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 1 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -10 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}3 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -34\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ 24\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ ? \\ -6\end{array}\right)$
4) $\left(\begin{array}{l}? \\ 0 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -33\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ 22\end{array}\right)\right\rangle$
5) $\left(\begin{array}{l}2 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -34\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ 19\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

| | Feed of company 1 | Feed of company 2 | Feed of company 3 | Feed of compa |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| animal flours | 1 K | 3 K | 0 K | 4 K |
| vegetable flours | 4 K | 1 K | 1 K | 3 K |
| fish flours | 4 K | 2 K | 1 K | 4 K |

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours		
20 K	24 K	fish flours 29 K

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 10.

1) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
3) Feed $1=4$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=1$, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 7476889

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}-1 & 2 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ -2 & -1 & 1 & -1 \\ 2 & 0 & -1 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -7 & 2 & 5 \\ 2 & ? & -1 & -1 \\ 1 & 2 & ? & -2 \\ -1 & -1 & 1 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -1 & 0 & 1 \\ 0 & ? & -1 & -1 \\ 2 & -1 & ? & 3 \\ 0 & 1 & 2 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & -4 & -2 & 3 \\ 1 & ? & 1 & 0 \\ 0 & 1 & ? & -1 \\ -1 & 1 & 0 & ?\end{array}\right)$ 4) $\left.\left.\left(\begin{array}{cccc}? & -2 & 1 & 0 \\ 0 & ? & -2 & 0 \\ 1 & -5 & ? & 0 \\ 0 & 0 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & -1 & -1 \\ -1 & ? & -1 & 1 \\ 1 & -2 & ? & -1 \\ 0 & -1 & 0 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & -1 & 0 \\ 1 & ? & -1 & -1 \\ -3 & 2 & ? & 0 \\ 5 & -3 & -3 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & -1 & 0 & -3 \\ 2 & ? & -2 & -3 \\ -1 & 1 & ? & 2 \\ 1 & 0 & -1 & ?\end{array}\right)$

Exercise 2
How many of the vectors (n -tuples)
$\left(\begin{array}{llll}2 & -2 & 0 & -2\end{array}\right),\left(\begin{array}{llll}-1 & 2 & -2 & -1\end{array}\right),\left(\begin{array}{llll}-2 & 0 & 2 & -2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3

Exercise 3

Check whether the vector (n -tuple) (-2 2 - 2) is a linear combination of the vectors $\left(\begin{array}{lll}-4 & 4 & -4\end{array}\right),\left(\begin{array}{lll}-2 & 2 & -2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)^{-1} \cdot\left(X+\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

1) $\left(\begin{array}{cc}-2 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}2 & * \\ * & *\end{array}\right)$ 5) $\left(\begin{array}{cc}* & -2 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & 0 & 0 & -2 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 1 & a \\ 1 & 1 & 2 & 2\end{array}\right)$ has determinant -4 ?

1) 0
2) 1
3) 4
4) -4
5) 2

Exercise 6

Find the solution of the linear system
$10 x_{1}-10 x_{2}-10 x_{3}-x_{4}+2 x_{5}=-2$
$-2 x_{1}+5 x_{2}+2 x_{3}+2 x_{4}-3 x_{5}=2$
$4 x_{1}+5 x_{2}-4 x_{3}+5 x_{4}-7 x_{5}=4$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ ? \\ 0 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -21\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ 17\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ 16\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}-3 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -25 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ 19 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ 27 \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{l}? \\ 0 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -18\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ 20 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ 18\end{array}\right)\right\rangle$
$4)\left(\begin{array}{c}? \\ ? \\ ? \\ -6 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -5\end{array}\right),\left(\begin{array}{c}-7 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}7 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 9 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ 2 \\ ? \\ ?\end{array}\right)$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours
Feed of company $1 \quad 2 \mathrm{~K} \quad 1 \mathrm{~K}$ 0K
Feed of company 2 33K 19K 2K
Feed of company 3 12K 7 K 1K
Feed of company 4 33K 19K 3K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours	fish flours	
172K	99 K	12 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9 .

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
2) Feed $1=$?, Feed $2=$?, Feed $3=2$, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
5) Feed $1=$?, Feed $2=2$, Feed $3=?$, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 7511947

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 1 & -1 & -1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & -2 & 1 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & 1 & -1 & 0 \\ -1 & ? & 0 & -1 \\ 0 & 0 & ? & 0 \\ -1 & 1 & -2 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -2 & 0 & 0 \\ 0 & ? & 1 & 2 \\ 0 & -4 & ? & 3 \\ 0 & 2 & -1 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -2 & 1 & -2 \\ -1 & ? & 1 & -3 \\ 0 & -2 & ? & -1 \\ 1 & 0 & 0 & ?\end{array}\right)$ 4)
$\left(\begin{array}{cccc}? & -2 & 2 & -3 \\ 2 & ? & 5 & -5 \\ 0 & 1 & ? & 1 \\ 1 & 1 & 2 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & -1 & -1 & 1 \\ 0 & ? & 1 & 1 \\ 1 & -2 & ? & 1 \\ 1 & -2 & -2 & ?\end{array}\right) \quad$ 6) $\left(\begin{array}{cccc}? & -1 & 0 & -1 \\ 0 & ? & 0 & 1 \\ 0 & -1 & ? & 0 \\ -1 & 0 & -1 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & 0 & 0 \\ 3 & ? & -1 & -2 \\ -1 & -1 & ? & 1 \\ -2 & 0 & 1 & ?\end{array}\right)$
Exercise 2
How many of the vectors (n -tuples)
$\left(\begin{array}{llll}0 & 2 & -2 & 1\end{array}\right),\left(\begin{array}{llll}2 & -2 & -2 & 1\end{array}\right),\left(\begin{array}{llll}-1 & -2 & 1 & -2\end{array}\right),\left(\begin{array}{llll}-1 & -1 & -2 & 0\end{array}\right)$,
are independent?
2) 1
3) 2
4) 3
5) 4

Exercise 3

Check whether the vector (n-tuple) (2-2-3) is a linear combination of the vectors $\left(\begin{array}{lll}-1 & 2 & 0\end{array}\right),\left(\begin{array}{lll}0 & -2 & -1\end{array}\right),\left(\begin{array}{lll}-1 & 2 & 2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{cc}0 & -1 \\ 1 & 3\end{array}\right) \cdot\left(X+\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & 1 \\ 0 & -2\end{array}\right)$

1) $\left(\begin{array}{ll}0 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}2 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{cc}* & -2 \\ * & *\end{array}\right) \quad$ 5) $\left(\begin{array}{ll}* & 0 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ a & 0 & 1 & -1 \\ 0 & 0 & -2 & 1\end{array}\right)$ has determinant 4 ?

1) 5
2) -2
3) 3
4) 1
5) -4

Exercise 6

Find the solution of the linear system
$-4 x_{1}-4 x_{2}+5 x_{3}+3 x_{4}=-2$
$-4 x_{1}+3 x_{2}+3 x_{3}+2 x_{4}==3$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ -13 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -4 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -27\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ 1 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -8 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ ? \\ -9\end{array}\right)+\left\langle\left(\begin{array}{c}-9 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ ? \\ -11 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ 10\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 20 \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}? \\ ? \\ -14 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ 9\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -24\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	3 K	19 K	5 K
Feed of company 2	4 K	27 K	7 K
Feed of company 3	1 K	7 K	2 K
Feed of company 4	3 K	22 K	6 K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	
43 K	290 K	fish flours
77 K		

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 16 .

1) Feed $1=$?, Feed $2=$?, Feed $3=3$, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
3) Feed $1=4$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=2$, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=4$, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021
 List of exercises 04-Matrices/Linear Systems for identity number: 7803104

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}2 & 1 & -1 & -1 \\ 1 & 4 & 1 & 0 \\ 1 & 3 & 1 & 0 \\ -1 & 0 & 1 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -11 & -7 & 1 \\ -2 & ? & 5 & -2 \\ -2 & 11 & ? & -2 \\ 5 & -22 & -14 & ?\end{array}\right) \quad$ 2) $\left.\left(\begin{array}{cccc}? & -1 & 1 & 1 \\ 0 & ? & -1 & 0 \\ -1 & -2 & ? & -1 \\ 2 & 1 & -2 & ?\end{array}\right) \quad 3\right)\left(\begin{array}{cccc}? & -4 & 3 & -3 \\ 11 & ? & -2 & 3 \\ 8 & 2 & ? & 2 \\ -15 & -4 & 3 & ?\end{array}\right)$
2)

$\left.\left(\begin{array}{cccc}? & -3 & -5 & 3 \\ 2 & ? & 5 & -3 \\ -3 & -1 & ? & 2 \\ -4 & -5 & -8 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & 0 & -1 \\ -1 & ? & -2 & 0 \\ 0 & 1 & ? & 2 \\ 1 & 0 & 1 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 0 & 0 \\ -1 & ? & -4 & -1 \\ 0 & 2 & ? & -1 \\ -1 & 2 & 0 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & 0 & 0 \\ 0 & ? & 1 & 1 \\ 1 & -2 & ? & 2 \\ 0 & 0 & -1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}-2 & -1 & -2 & 1\end{array}\right),\left(\begin{array}{llll}1 & -2 & 0 & 0\end{array}\right),\left(\begin{array}{llll}-1 & 0 & 1 & 0\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3

Exercise 3

Check whether the vector (n-tuple) ($-4-8-5$) is a linear combination of the vectors $\left(\begin{array}{lll}0 & -2 & 0\end{array}\right),\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & -1 & 0\end{array}\right),\left(\begin{array}{lll}1 & -2 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:

$$
\left(X+\left(\begin{array}{cc}
1 & 0 \\
-4 & 1
\end{array}\right)\right) \cdot\left(\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
-1 & -1 \\
8 & 6
\end{array}\right)
$$

1) $\left(\begin{array}{ll}0 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}2 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}* & -1 \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}* & 1 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{ll}* & 2 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 1 \\ 2 & -2 & 0 & 1 \\ 2 & a & 1 & 1\end{array}\right)$ has determinant 7?

1) 1
2) 0
3) 3
4) -3
5) 2

Exercise 6

Find the solution of the linear system
$2 x_{1}-8 x_{3}-4 x_{4}-8 x_{5}=8$
$x_{1}+x_{2}+4 x_{4}+4 x_{5}==0$
$-2 x_{1}-x_{2}+4 x_{3}-2 x_{4}=-4$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ 6 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -6 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -4 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 3 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ ? \\ -3 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}6 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}1 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -10 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ -2 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -7 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -4 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -11 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ 0 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}4 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}2 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}4 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{l}6 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 5 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}0 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 1 \\ ?\end{array}\right),\left(\begin{array}{l}4 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours
Feed of company 1 7K 15K 10K
Feed of company 2 3K 6K 4K
Feed of company 3 3K 8K 5K
Feed of company $4 \quad 5 \mathrm{~K} \quad 12 \mathrm{~K} 8 \mathrm{~K}$

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
56 K	133 K	87 K

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
2) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=3$
5) Feed $1=$?, Feed $2=$?, Feed $3=5$, Feed $4=$?

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 8623226

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 2 & -1 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & -2 & -1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -8 & -6 & -1 \\ 1 & ? & 4 & 1 \\ 1 & 7 & ? & 2 \\ 0 & -5 & -4 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -3 & -1 & 0 \\ 0 & ? & 1 & 0 \\ 1 & -3 & ? & 1 \\ 3 & -6 & -1 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & -1 & -2 & -1 \\ 0 & ? & 0 & 0 \\ 1 & -1 & ? & 0 \\ -2 & 3 & 1 & ?\end{array}\right)$
4)

$\left(\begin{array}{cccc}? & -3 & -2 & -4 \\ 0 & ? & 1 & 0 \\ 2 & -1 & ? & -2 \\ 1 & -1 & 0 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & -1 & -1 & -1 \\ 1 & ? & -1 & -1 \\ 0 & -1 & ? & 0 \\ 0 & 0 & 0 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 0 & 1 \\ 2 & ? & 0 & -1 \\ 2 & 2 & ? & 1 \\ -3 & -4 & 0 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & 1 & 0 \\ 1 & ? & 0 & -2 \\ 0 & 0 & ? & 2 \\ 0 & 0 & 0 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}1 & 2 & 2 & -1\end{array}\right),\left(\begin{array}{llll}-4 & 0 & 0 & -4\end{array}\right),\left(\begin{array}{llll}-1 & 1 & -2 & -2\end{array}\right),\left(\begin{array}{llll}-2 & 0 & 0 & -2\end{array}\right),\left(\begin{array}{lll}-3 & -2 & -2\end{array}\right.$-1 $)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n-tuple) (-1100 is a linear combination of the vectors $\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right),\left(\begin{array}{lll}-2 & 2 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{cc}3 & 5 \\ -5 & -8\end{array}\right) \cdot X+\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}6 & 5 \\ -9 & -7\end{array}\right)$

1) $\left(\begin{array}{ll}0 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{cc}* & -1 \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}* & 2 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{cc}* & * \\ -1 & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & a & 1 & -2 \\ 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 1 & 0 & 1 & -1\end{array}\right)$ has determinant 0 ?

1) -4
2) 5
3) -2
4) 1 5) 0

Exercise 6

Find the solution of the linear system
$3 x_{1}-2 x_{2}-2 x_{3}+3 x_{4}+5 x_{5}==1$
$4 x_{1}+x_{3}-5 x_{4}-8 x_{5}=-3$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ ? \\ -3 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 3 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 4\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -1\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -2\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}2 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -24\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -14 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -12 \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -4\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -27\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -16 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -11 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ ? \\ -1 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -7 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{l}? \\ ? \\ 1 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -26\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -15 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ 10\end{array}\right)\right.$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

| | Feed of company 1 | Feed of company 2 | Feed of company 3 | Feed of compa |
| :--- | :--- | :--- | :--- | :--- | :--- |
| animal flours | 17 K | 17 K | 13 K | 3 K |
| vegetable flours | 9 K | 10 K | 7 K | 2 K |
| fish flours | 4 K | 5 K | 3 K | 1 K |

fish flours $4 \mathrm{~K} \quad 5 \mathrm{~K} \quad 3 \mathrm{~K} \quad$ 1K

The experts of the livestock farm determined
that every week each animal needs the following composition:

```
animal flours vegetable flours fish flours
```

62K
36K
17K
How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the
feed, the total number of sacks for every animal has to be equal to 8.

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
3) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=5$
5) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 8792788

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}4 & 3 & -1 & -3 \\ 1 & 1 & -1 & 0 \\ 2 & 2 & -1 & -1 \\ -1 & -1 & 1 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & 2 & -2 & 1 \\ -1 & ? & 3 & 0 \\ 0 & -1 & ? & 1 \\ 0 & 1 & 0 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -3 & -2 & 0 \\ 2 & ? & 1 & -3 \\ 1 & 0 & ? & -1 \\ -1 & 1 & 0 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & -1 & -2 & 2 \\ -3 & ? & 1 & -1 \\ -4 & 1 & ? & -1 \\ 8 & -3 & -3 & ?\end{array}\right)$
$\left.\left.\left(\begin{array}{cccc}? & -1 & 1 & 0 \\ -2 & ? & -4 & -2 \\ 0 & 3 & ? & -1 \\ 1 & -4 & 1 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & 2 & 0 \\ -1 & ? & 0 & 2 \\ 0 & -1 & ? & -1 \\ 0 & 1 & -2 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & 0 & 0 & 0 \\ 0 & ? & 0 & 1 \\ 1 & 0 & ? & 1 \\ -1 & 0 & 0 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & 0 & 0 \\ 2 & ? & -1 & -1 \\ -2 & 0 & ? & 1 \\ 1 & 0 & -1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}1 & -1 & 1 & 1\end{array}\right),\left(\begin{array}{llll}1 & -1 & 1 & 2\end{array}\right),\left(\begin{array}{llll}0 & 1 & -2 & 0\end{array}\right),\left(\begin{array}{llll}-1 & -2 & -2 & 2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) ($-4-35$) is a linear combination of the vectors $\left(\begin{array}{lll}-1 & 2 & -1\end{array}\right),\left(\begin{array}{lll}1 & -2 & 2\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right) \cdot\left(X-\left(\begin{array}{ll}-1 & 4 \\ -1 & 3\end{array}\right)\right)=\left(\begin{array}{ll}2 & -3 \\ 4 & -1\end{array}\right)$

1) $\left(\begin{array}{cc}-2 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}2 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}* & -2 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{ll}* & 0 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & 0 & -1 & 2 \\ 1 & 1 & 0 & 1 \\ 0 & -1 & -1 & 2 \\ -2 & a & 1 & 1\end{array}\right)$ has determinant -2 ?

1) 4
2) 0
3) -5
4) -3
5) 1

Exercise 6

Find the solution of the linear system
$-6 x_{1}+2 x_{2}+x_{3}-2 x_{4}+7 x_{5}=-9$
$-3 x_{1}+5 x_{2}-x_{4}+4 x_{5}=-5$
$-3 x_{1}-3 x_{2}+x_{3}-x_{4}+3 x_{5}=4$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}0 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -3 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -8\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 4 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ 5 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 2 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{l}1 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 3\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -28 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 2 \\ ?\end{array}\right)\right\rangle$
$4)\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -1\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -2\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -9\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 4\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}-2 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}9 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -2 \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours

Feed of company 1	$9 K$	$6 K$	$1 K$
Feed of company 2	8 K	6 K	1 K
Feed of company 3	1 K	1 K	0 K
Feed of company 4	13 K	8 K	2 K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
110K	72 K	15 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
2) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
4) Feed $1=3$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=4$

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 9214549

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & -2 & 1 & 2 \\ 0 & 0 & -1 & 0 \\ -1 & 3 & 0 & -2 \\ 0 & -1 & -1 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -6 & 3 & 3 \\ 2 & ? & 1 & 1 \\ 0 & -4 & ? & 0 \\ -3 & 5 & -2 & ?\end{array}\right) \quad$ 2) $\left(\begin{array}{cccc}? & -5 & -9 & 6 \\ 0 & ? & 6 & -5 \\ -1 & 2 & ? & -2 \\ 1 & -2 & -4 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & -4 & 7 & 0 \\ 7 & ? & 10 & 0 \\ -3 & 2 & ? & 0 \\ -2 & 3 & -5 & ?\end{array}\right) \quad$ 4)
$\left(\begin{array}{cccc}? & 3 & 0 & -2 \\ 1 & ? & 1 & 0 \\ 0 & -1 & ? & 0 \\ 1 & 0 & 1 & ?\end{array}\right) \quad$ 5) $\left.\left(\begin{array}{cccc}? & -2 & 0 & 1 \\ -1 & ? & 0 & 0 \\ 0 & 0 & ? & 0 \\ 1 & -2 & 0 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -2 & 2 & -1 \\ 1 & ? & -5 & 3 \\ 0 & 1 & ? & 1 \\ 1 & 2 & -2 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & -1 & -1 & -2 \\ -4 & ? & -3 & -5 \\ -1 & -1 & ? & -2 \\ 4 & 3 & 4 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}2 & -2 & -1 & -1 & -1\end{array}\right),\left(\begin{array}{lllll}-4 & -4 & 4 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}-1 & -1 & 4 & 2 & -1\end{array}\right),\left(\begin{array}{lllll}-2 & -2 & 2 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 2 & -1\end{array}\right)$, are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n-tuple) ($-4-87-5$) is a linear combination of the vectors $\left(\begin{array}{llll}1 & 0 & 0 & 2\end{array}\right),\left(\begin{array}{llll}1 & -1 & 1 & -1\end{array}\right),\left(\begin{array}{llll}0 & 2 & -2 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}-1 & -2 & 2 \\ 0 & 1 & 0 \\ -1 & -2 & 1\end{array}\right) \cdot X \cdot\left(\begin{array}{ccc}-1 & 1 & -2 \\ -1 & 2 & -3 \\ 2 & -1 & 2\end{array}\right)^{-1}=\left(\begin{array}{ccc}11 & -3 & 5 \\ -1 & 0 & -1 \\ 8 & -2 & 4\end{array}\right)$

1) $\left(\begin{array}{ccc}-2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}* & 2 & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{ccc}* & * & -2 \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{ccc}* & * & * \\ -2 & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & -1 & 0 & 2 \\ a & 2 & 0 & 1 \\ 0 & -3 & 2 & 3 \\ 2 & -2 & 1 & 2\end{array}\right)$ has determinant -14 ?

1) 5
2) 0
3) -3
4) $3 \quad$ 5) -1

Exercise 6

Find the solution of the linear system
$-2 x_{1}+x_{2}=4$
$2 x_{1}+x_{2}+5 x_{3}=-5$
$-x_{1}-x_{2}-4 x_{3}=-3$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ 2 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -5 \\ ?\end{array}\right),\left(\begin{array}{l}9 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ 1 \\ ?\end{array}\right)$
3) $\left(\begin{array}{l}9 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}3 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -2\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -4\end{array}\right),\left(\begin{array}{l}7 \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}? \\ 4 \\ ?\end{array}\right)$
5) $\left(\begin{array}{l}? \\ 2 \\ ?\end{array}\right)$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

animal flours	vegetable flours	fish flours
45 K	69 K	77 K
28 K	46 K	50 K
46 K	71 K	79 K
30 K	47 K	52 K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours \begin{tabular}{ll}
vegetable flours

310 K \& 488 K

\quad

fish flours

539 K
\end{tabular}

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9 .

1) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
3) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
5) Feed $1=$?, Feed $2=3$, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 9810258

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}0 & 1 & 3 & -2 \\ -1 & 0 & -1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -4 & -1 & 1 \\ 2 & ? & 1 & -1 \\ 0 & 2 & ? & -1 \\ 0 & 0 & 0 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -3 & 2 & 0 \\ 0 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ 1 & -3 & 0 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & 3 & -1 & 3 \\ 0 & ? & 1 & -1 \\ -1 & -4 & ? & -3 \\ -2 & -6 & 2 & ?\end{array}\right)$
4)

$\left.\left.\left(\begin{array}{cccc}? & 0 & -3 & -2 \\ -1 & ? & -1 & 0 \\ -1 & 1 & ? & 0 \\ 0 & 0 & 2 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & 0 & -1 & 0 \\ -2 & ? & 0 & 1 \\ 3 & -1 & ? & -1 \\ 0 & 0 & 0 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & 0 & -1 & 0 \\ -1 & ? & 1 & 0 \\ 1 & 1 & ? & -2 \\ 1 & -1 & 2 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & -1 & 1 \\ 0 & ? & -1 & -1 \\ 1 & -1 & ? & 2 \\ 0 & 1 & 0 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}-2 & 1 & -2 & 1\end{array}\right),\left(\begin{array}{llll}-4 & -2 & -4 & -4\end{array}\right),\left(\begin{array}{llll}-2 & -1 & -2 & -2\end{array}\right),\left(\begin{array}{llll}1 & 2 & 2 & 1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) ($-6-42$) is a linear combination of the vectors
$\left(\begin{array}{lll}1 & -2 & -1\end{array}\right),\left(\begin{array}{lll}2 & 0 & -1\end{array}\right)$,

1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation: $\left(\begin{array}{ll}-2 & -1 \\ -3 & -2\end{array}\right) \cdot X-\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -4\end{array}\right)$

1) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}2 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}* & 1 \\ * & *\end{array}\right) \quad$ 5) $\left(\begin{array}{ll}* & 2 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & 0 & -1 & -2 \\ 0 & 0 & 1 & -1 \\ -1 & 1 & -2 & a \\ 1 & 1 & 0 & -2\end{array}\right)$ has determinant -1 ?

1) 2
2) 0
3) 3
4) 5
5) -2

Exercise 6

Find the solution of the linear system
$-5 x_{1}-2 x_{2}-7 x_{3}-4 x_{4}=-9$
$-5 x_{1}-x_{2}-2 x_{3}-x_{4}=-3$
$5 x_{1}-3 x_{3}-2 x_{4}=-3$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ ? \\ -5\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ 27\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 0 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ -10 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 5 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 0 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -10 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -2\end{array}\right)\right\rangle$
$3)\left(\begin{array}{l}? \\ ? \\ 2 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 8 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 9 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -3\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}-3 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ 28\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 0 \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ ? \\ ? \\ -3\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -15 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -2 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	$4 K$	$2 K$	$3 K$
Feed of company 2	$6 K$	$3 K$	$4 K$
Feed of company 3	$11 K$	$6 K$	$9 K$
Feed of company 4	$2 K$	$2 K$	$4 K$

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours		
42 K	26 K	fish flours 43 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9.

1) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?
2) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=3$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
5) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 12865294

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & -4 & -2 & -3 \\ -1 & 14 & 7 & 10 \\ 0 & 9 & 5 & 7 \\ 0 & 4 & 2 & 3\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & 0 & 0 & 1 \\ 1 & ? & -1 & 0 \\ 1 & 1 & ? & -7 \\ -2 & -2 & 0 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -6 & 2 & 0 \\ 6 & ? & 2 & 1 \\ 0 & 1 & ? & -1 \\ 5 & -7 & 2 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -3 & 0 & -1 \\ 1 & ? & 0 & 1 \\ 0 & 1 & ? & 0 \\ -1 & -2 & 0 & ?\end{array}\right)$
2)

$\left.\left.\left.\left(\begin{array}{cccc}? & -2 & -2 & 1 \\ -1 & ? & 1 & -1 \\ -2 & 2 & ? & -1 \\ -3 & 3 & 4 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -2 & -1 & 3 \\ -4 & ? & 2 & -4 \\ -1 & 0 & ? & -1 \\ 3 & -2 & -2 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -2 & 0 & 0 \\ 0 & ? & 1 & 0 \\ -1 & 2 & ? & 0 \\ 1 & -2 & 0 & ?\end{array}\right) \quad 7\right)\left(\begin{array}{cccc}? & -1 & -3 & -1 \\ -3 & ? & 5 & -1 \\ 0 & 0 & ? & 0 \\ 0 & 0 & 0 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left.\left(\begin{array}{lllll}2 & -2 & 1 & 2\end{array}\right),\left(\begin{array}{lllll}0 & 0 & 1 & 0 & -1\end{array}\right),\left(\begin{array}{llll}2 & 0 & 0 & 0\end{array}\right)-2\right),\left(\begin{array}{lllll}-3 & 1 & 1 & -2 & 0\end{array}\right),\left(\begin{array}{lllll}-1 & 1 & 1 & -2 & -2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n -tuple) ($-4-4-61)$ is a linear combination of the vectors $\left(\begin{array}{llll}0 & 0 & -2 & -1\end{array}\right),\left(\begin{array}{llll}1 & 1 & -2 & -2\end{array}\right),\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}-1 & -1 & 3\end{array} 2.\right),\left(\begin{array}{llll}0 & 0 & -4 & -2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}a & 1 & -2 & 1 \\ -1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 1 \\ -1 & 2 & 1 & 1\end{array}\right)$ has determinant -19?

1) -5
2) - 3
3) 0
4) -1
5) -4

Exercise 6

Find the solution of the linear system
$4 x_{1}+4 x_{2}-x_{3}-5 x_{4}=-4$
$x_{1}+x_{2}+4 x_{4}+4 x_{5}=5$
$x_{1}+2 x_{3}+5 x_{5}=-5$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ ? \\ -3 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -20 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -15 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ 6 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 6 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ -2 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -24 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -18 \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ ? \\ 0 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -46 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -31 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{c}? \\ ? \\ -8 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ 8 \\ ?\end{array}\right),\left(\begin{array}{l}5 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 3\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -6 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours
Feed of company $1 \quad 11 \mathrm{~K}$ 3K 20K
Feed of company $2 \quad 3 \mathrm{~K}$ 1K 5K
Feed of company $3 \quad 7 \mathrm{~K} \quad 2 \mathrm{~K} \quad 13 \mathrm{~K}$

Feed of company $4 \quad 11 \mathrm{~K} \quad 3 \mathrm{~K} \quad 18 \mathrm{~K}$
The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
79 K	22 K	144 K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 1 to be equal to 5 .

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
2) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
3) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=3$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 13082921

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & -2 & 1 & 0 \\ 1 & -1 & 1 & 0 \\ -1 & -4 & 2 & 2 \\ 0 & -2 & 1 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -4 & -2 & 0 \\ -1 & ? & 1 & 0 \\ -3 & 3 & ? & 0 \\ -1 & 0 & 0 & ?\end{array}\right) \quad$ 2) $\left(\begin{array}{cccc}? & -4 & 0 & 3 \\ 0 & ? & -1 & -7 \\ -1 & -4 & ? & 3 \\ 1 & 7 & -2 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & 0 & -1 & 2 \\ -1 & ? & 0 & 0 \\ -1 & 2 & ? & -2 \\ -1 & 0 & -1 & ?\end{array}\right)$ 4)
$\left.\left(\begin{array}{cccc}? & -3 & -2 & 2 \\ 0 & ? & -1 & 0 \\ 1 & -1 & ? & 1 \\ 1 & 0 & -1 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -2 & -4 & -3 \\ -1 & ? & -1 & 1 \\ 0 & 1 & ? & 1 \\ 1 & -1 & -2 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -2 & 1 & 0 \\ 0 & ? & -1 & -1 \\ 0 & -1 & ? & -1 \\ -3 & 2 & 1 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -2 & 2 & -3 \\ 2 & ? & -2 & 1 \\ 2 & 1 & ? & 2 \\ -1 & 0 & 0 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-1 & 0 & 2 & -2 & 0\end{array}\right),\left(\begin{array}{lllll}2 & 2 & 2 & -2 & 0\end{array}\right),\left(\begin{array}{lllll}0 & -2 & 1 & 1 & 1\end{array}\right),\left(\begin{array}{lllll}1 & -2 & 0 & 1 & -2\end{array}\right),\left(\begin{array}{lllll}-1 & 2 & -1 & 2 & -1\end{array}\right)$, are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n -tuple) ($-1-50-5$) is a linear combination of the vectors $\left(\begin{array}{llll}0 & 2 & -1 & 2\end{array}\right),\left(\begin{array}{llll}-1 & -1 & -2 & -1\end{array}\right),\left(\begin{array}{llll}-2 & -2 & -4 & -2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & 0 \\ 2 & 1 & 0\end{array}\right) \cdot\left(X-\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right)\right)=\left(\begin{array}{ccc}-1 & 4 & 1 \\ -1 & 2 & 1 \\ -1 & 4 & 1\end{array}\right)$

1) $\left(\begin{array}{ccc}-2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & 0 & * \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & * & 0 \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & 1 & 0 & a \\ 0 & 1 & 0 & -2 \\ 0 & 1 & -1 & -1 \\ 1 & 0 & -1 & -2\end{array}\right)$ has determinant 2?

1) -4
2) 1
3) 0
4) 2
5) 3

Exercise 6

Find the solution of the linear system
$x_{1}-2 x_{2}+2 x_{3}-2 x_{4}-x_{5}-4 x_{6}=-5$
$-x_{1}-2 x_{2}+3 x_{3}+5 x_{4}-3 x_{6}=-2$
$-x_{2}+x_{3}+4 x_{4}-x_{5}-5 x_{6}=-4$
$-4 x_{1}+x_{2}+x_{3}+10 x_{4}+3 x_{5}+7 x_{6}=-10$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.
$1)\left(\begin{array}{c}? \\ 26 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}13 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -1 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-7 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ ? \\ 2\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ 15 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}0 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -11 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ -4 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ -4 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 5 \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 0 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ 13 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -4 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -18 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}? \\ ? \\ ? \\ 1 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -3 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours

Feed of company 1	9 K	19 K	6 K
Feed of company 2	6 K	13 K	4 K
Feed of company 3	8 K	11 K	6 K
Feed of company 4	13 K	24 K	9 K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	
83 K	143 K	fish flours
59 K		

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 4 to be equal to 1.

1) Feed $1=$?, Feed $2=$?, Feed $3=2$, Feed $4=$?
2) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
3) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=4$, Feed $4=$?

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 21055224

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}0 & -1 & 0 & -1 \\ 0 & 2 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & -2 & 1 & 0\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -9 & 7 & -11 \\ 0 & ? & -3 & 4 \\ 0 & 2 & ? & 4 \\ 0 & 1 & -1 & ?\end{array}\right) \quad$ 2) $\left(\begin{array}{cccc}? & -1 & -2 & 1 \\ -2 & ? & 2 & -1 \\ -2 & 2 & ? & -1 \\ 1 & -2 & -1 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & 2 & 3 & 1 \\ 1 & ? & 2 & 0 \\ 0 & 0 & ? & 0 \\ -2 & -1 & -2 & ?\end{array}\right) \quad$ 4) $\left(\begin{array}{cccc}? & -1 & 0 & -1 \\ 0 & ? & 0 & 0 \\ 1 & 0 & ? & 0 \\ 1 & 1 & 0 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & -1 & 1 & -1 \\ 2 & ? & 2 & -3 \\ 0 & -1 & ? & -1 \\ -1 & 0 & 0 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 2 & -3 \\ -4 & ? & -5 & 6 \\ 2 & -1 & ? & -5 \\ 5 & -4 & 5 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & 4 & 0 \\ 1 & ? & 2 & -1 \\ 1 & 0 & ? & 0 \\ 0 & 0 & -1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}-2 & 0 & 1 & 1\end{array}\right),\left(\begin{array}{llll}0 & -1 & -1 & 2\end{array}\right),\left(\begin{array}{llll}-2 & 2 & -1 & 1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3

Exercise 3

Check whether the vector (n-tuple) ($-4-9-8$) is a linear combination of the vectors $\left(\begin{array}{lll}-1 & -2 & 2\end{array}\right),\left(\begin{array}{lll}0 & 1 & -2\end{array}\right),\left(\begin{array}{lll}-2 & -3 & 4\end{array}\right),\left(\begin{array}{lll}-2 & -4 & 4\end{array}\right),\left(\begin{array}{lll}-1 & -1 & 2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{cc}12 & -5 \\ -7 & 3\end{array}\right) \cdot X \cdot\left(\begin{array}{cc}-1 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}34 & -17 \\ -20 & 10\end{array}\right)$

1) $\left(\begin{array}{cc}-2 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}0 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{cc}* & -2 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{cc}* & * \\ -2 & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & 2 & 1 & -1 \\ 1 & a & -2 & -1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & -1 & -2\end{array}\right)$ has determinant -13 ?

1) -1
2) - 2
3) 2
4) 1 5) 5

Exercise 6

Find the solution of the linear system
$x_{1}+12 x_{3}-5 x_{4}=-2$
$x_{1}-3 x_{2}-7 x_{3}+3 x_{4}=2$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}-1 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -10 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 18 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}2 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -5 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 17 \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ -9 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -9 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 5 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ ? \\ -8\end{array}\right)$
4) $\left(\begin{array}{c}? \\ ? \\ ? \\ 10\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -19\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 15 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
Feed of company 1 Feed of company 2 Feed of company 3

Feed of comp:
animal flours vegetable flours fish flours 1K

4K
2K
1K

1K
1K
0K

2K
1K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours	fish flours	
29 K	18 K	9 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 13.

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
2) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=3$
4) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=2$, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 26052770

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}0 & -2 & -1 & 4 \\ -1 & 0 & -1 & 1 \\ -1 & 2 & -1 & -2 \\ 0 & -1 & 1 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -4 & 1 & 2 \\ 1 & ? & 1 & 1 \\ 1 & -2 & ? & 0 \\ 0 & 1 & 0 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -2 & -1 & -1 \\ -1 & ? & 0 & 1 \\ 0 & 2 & ? & 0 \\ 0 & 1 & 1 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -2 & 0 & -3 \\ 0 & ? & 0 & 1 \\ 2 & -3 & ? & -3 \\ -1 & 0 & 0 & ?\end{array}\right)$ 4)
$\left.\left.\left(\begin{array}{cccc}? & -2 & 1 & 0 \\ 3 & ? & 5 & 3 \\ 1 & -2 & ? & 2 \\ 2 & -3 & 3 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -2 & 2 & 3 \\ -4 & ? & -2 & -5 \\ 0 & 0 & ? & -1 \\ -1 & 1 & -1 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & -2 & 1 \\ 0 & ? & 1 & -2 \\ 0 & 1 & ? & -1 \\ 0 & 1 & 1 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & -1 & -1 \\ 2 & ? & -1 & -3 \\ -1 & 1 & ? & 1 \\ 0 & 1 & 0 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-2 & 1 & 1 & 0 & -2\end{array}\right),\left(\begin{array}{lllll}1 & -2 & 1 & -2 & 1\end{array}\right),\left(\begin{array}{lllll}1 & -1 & 2 & -1 & 1\end{array}\right)$
, ($-4220-4$), ($22-2000$, ($\left.\begin{array}{llllll}-3 & 3 & 0 & 2 & -3\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5
6) 6

Exercise 3

Check whether the vector (n-tuple) ($2-4 \quad 2-4$) is a linear combination of the vectors $\left(\begin{array}{llll}1 & -2 & 1 & -2\end{array}\right),\left(\begin{array}{llll}0 & 0 & 0 & -3\end{array}\right),\left(\begin{array}{llll}0 & 0 & 0 & 3\end{array}\right),\left(\begin{array}{llll}1 & -2 & 1 & 1\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}1 & 0 & -1 \\ -1 & 1 & -3 \\ 0 & 0 & 1\end{array}\right) \cdot X+\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ -2 & 1 & -1\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 3 \\ 1 & 0 & 1 \\ -2 & 1 & -2\end{array}\right)$

1) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{ccc}* & -1 & \star \\ \star & * & \star \\ \star & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & * & -1 \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-2 & 1 & 1 & 0 \\ a & -1 & 1 & 0 \\ 2 & -2 & -1 & 0 \\ 2 & 0 & 1 & -1\end{array}\right)$ has determinant 4?

1) -5
2) - 3
3) 2
4) 3
5) 0

Exercise 6

Find the solution of the linear system
$5 x_{1}-4 x_{2}-2 x_{3}-7 x_{4}=-5$
$-4 x_{2}-x_{3}-7 x_{4}=-4$
$2 x_{1}-x_{2}-2 x_{4}=3$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ 47 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -24 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ ? \\ -22\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ 14\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}-4 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -6 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -4 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -1 \\ ?\end{array}\right),\left(\begin{array}{l}4 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}3 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-5 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -4 \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}? \\ ? \\ -11 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -21 \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	$2 K$	$2 K$	$3 K$
Feed of company 2	$0 K$	$1 K$	$1 K$
Feed of company 3	$0 K$	$4 K$	$4 K$
Feed of company 4	$3 K$	$3 K$	$5 K$

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours		
23 K	28 K	fish flours 42 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 14.

1) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=4$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=4$

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity

 number: 26256869
Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & -1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -4 & -5 & 6 \\ 0 & ? & -1 & 2 \\ 0 & 1 & ? & -1 \\ 2 & -4 & -4 & ?\end{array}\right)$
2) $\left(\begin{array}{llll}? & 1 & 1 & 1 \\ 1 & ? & 0 & 1 \\ 0 & 0 & ? & 0 \\ 1 & 0 & 1 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & -2 & -6 & 12 \\ -4 & ? & 7 & -16 \\ -1 & 1 & ? & -5 \\ -1 & 1 & 4 & ?\end{array}\right)$
4)

$\left.\left.\left(\begin{array}{cccc}? & -2 & 5 & 2 \\ 8 & ? & 12 & 5 \\ -9 & 5 & ? & -6 \\ 11 & -6 & 17 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & -2 & 2 \\ 0 & ? & 1 & -1 \\ 1 & -1 & ? & -1 \\ -1 & 2 & 1 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & -1 & 1 \\ 1 & ? & -1 & 1 \\ 0 & 0 & ? & -1 \\ -1 & 1 & 1 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & -1 & 9 & 4 \\ -7 & ? & -13 & -6 \\ -2 & 1 & ? & -2 \\ 3 & -1 & 6 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n-tuples)
$\left(\begin{array}{lllll}2 & -1 & -1 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}-1 & 2 & -1 & -2 & 1\end{array}\right),\left(\begin{array}{lllll}-1 & 2 & -2 & -1 & 0\end{array}\right),\left(\begin{array}{lllll}0 & -1 & -2 & 0 & -1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) ($4-1-61$ is a linear combination of the vectors $\left(\begin{array}{llll}2 & -1 & -2 & 1\end{array}\right),\left(\begin{array}{llll}1 & 1 & -4 & 0\end{array}\right),\left(\begin{array}{llll}-3 & 3 & 0 & -2\end{array}\right),\left(\begin{array}{llll}-1 & 2 & -2 & -1\end{array}\right)$,

1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(X-\left(\begin{array}{ccc}1 & -2 & -2 \\ 0 & -1 & -2 \\ 1 & 0 & 1\end{array}\right)\right) \cdot\left(\begin{array}{ccc}-1 & -2 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}2 & 3 & 4 \\ 0 & -1 & 2 \\ 1 & 1 & -1\end{array}\right)$

1) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & * & 0 \\ * & * & * \\ * & * & *\end{array}\right)$ 5) $\left(\begin{array}{lll}* & * & * \\ 1 & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & 0 & 0 & -1 \\ 2 & 1 & a & 2 \\ 0 & -2 & -1 & 1 \\ 0 & 3 & 1 & -1\end{array}\right)$ has determinant 5 ?

1) 5
2) 1
3) -5
4) 3
5) -2

Exercise 6

Find the solution of the linear system
$-6 x_{1}+10 x_{2}+x_{3}=7$
$4 x_{1}-7 x_{2}-x_{3}=0$
$4 x_{1}-6 x_{2}-x_{3}=3$
$-3 x_{1}+5 x_{2}+x_{3}=-5$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ -1 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -1 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}-7 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 4 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 8\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ -14\end{array}\right)$
4) $\left(\begin{array}{c}? \\ ? \\ -16\end{array}\right)$
5) $\left(\begin{array}{c}? \\ ? \\ -17\end{array}\right)$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	$9 K$	$4 K$	$6 K$
Feed of company 2	$15 K$	$7 K$	$10 K$
Feed of company 3	$5 K$	$2 K$	$4 K$
Feed of company 4	$1 K$	$0 K$	$1 K$

The experts of the livestock farm determined
that every week each animal needs the following composition:

| animal flours vegetable flours | |
| :--- | :--- | :--- |
| 125 K | fish flours |
| 55 K | |

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 1 to be equal to 5 .

1) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=5$
3) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=3$
4) Feed $1=3$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=3$, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 26523012

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}-1 & 5 & 3 & 5 \\ -1 & 2 & 1 & 1 \\ -2 & 3 & 2 & 1 \\ 1 & 0 & 0 & 2\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -5 & -1 & 3 \\ -7 & ? & 2 & -6 \\ 0 & 0 & ? & 1 \\ -3 & 4 & 1 & ?\end{array}\right) \quad$ 2) $\left(\begin{array}{cccc}? & -4 & -1 & 2 \\ 2 & ? & 0 & -6 \\ 1 & 10 & ? & -4 \\ -1 & -8 & 1 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & -2 & -2 & -3 \\ 1 & ? & -2 & -2 \\ 1 & -4 & ? & -1 \\ -1 & 1 & 1 & ?\end{array}\right)$ 4)
$\left.\left.\left(\begin{array}{cccc}? & -2 & -3 & 0 \\ -2 & ? & -2 & 1 \\ 1 & 1 & ? & 0 \\ -1 & 0 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & 1 & -1 \\ 0 & ? & 1 & -1 \\ -1 & -3 & ? & 0 \\ 0 & 2 & -1 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & 1 & 1 \\ -2 & ? & 1 & 1 \\ -2 & -1 & ? & 2 \\ -5 & -3 & 2 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & -1 & 9 & 2 \\ -3 & ? & -6 & -1 \\ 0 & 0 & ? & 0 \\ 4 & -1 & 9 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-2 & -2 & -1 & 2 & 1\end{array}\right),\left(\begin{array}{lllll}2 & 0 & -2 & 1 & -1\end{array}\right),\left(\begin{array}{lllll}-2 & 1 & 0 & -1 & 0\end{array}\right),\left(\begin{array}{lllll}-2 & 2 & 2 & 2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) ($-2-8-3-5$) is a linear combination of the vectors $\left(\begin{array}{llll}-3 & -2 & 0 & -2\end{array}\right),\left(\begin{array}{llll}1 & -2 & -4 & 0\end{array}\right),\left(\begin{array}{llll}-1 & -2 & -2 & -1\end{array}\right),\left(\begin{array}{llll}-2 & -4 & -4 & -2\end{array}\right),\left(\begin{array}{llll}2 & 0 & -2 & 1\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 4 & 2 & 7\end{array}\right) \cdot X-\left(\begin{array}{ccc}0 & -1 & 2 \\ 1 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 2 & -2 \\ 2 & 1 & 2 \\ 9 & 6 & 2\end{array}\right)$

1) $\left(\begin{array}{lll}2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{ccc}* & -1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{ccc}* & * & * \\ -1 & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & * & * \\ 0 & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 2 & 0 & 1 & 2 \\ -2 & 1 & 0 & 0 \\ a & 1 & 0 & 1\end{array}\right)$ has determinant 1 ?

1) -4
2) 5
3) 3
4) 0
5) -3

Exercise 6

Find the solution of the linear system
$6 x_{1}-3 x_{2}+5 x_{3}-4 x_{4}-5 x_{5}=-4$
$x_{1}+x_{3}+5 x_{4}+4 x_{5}=5$
$2 x_{1}-x_{2}+2 x_{3}-x_{4}+3 x_{5}=-5$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}8 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 1\end{array}\right),\left(\begin{array}{c}-6 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -2 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ ? \\ 6 \\ ? \\ ?\end{array}\right)$
$3)\left(\begin{array}{c}? \\ ? \\ -11 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-4 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -5 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -1\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -14 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -13 \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -3\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -4 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}13 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
7 K	7 K	1 K	2 K
6 K		1 K	2 K
15 K		3 K	

vegetable flours 6K 6K
fish flours 15K 15K

The experts of the livestock farm determined
that every week each animal needs the following composition:
animal flours vegetable flours fish flours

67K
58K
147K
How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 2 to be equal to 5 .

1) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
3) Feed $1=$?, Feed $2=$?, Feed $3=2$, Feed $4=$?
4) Feed $1=$?, Feed $2=2$, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 48143225

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 0 & -1 & 1 \\ 3 & 1 & -3 & 3 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -5 & -7 & 2 \\ 0 & ? & -3 & 1 \\ 0 & 0 & ? & 1 \\ 0 & -3 & -4 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -3 & 2 & -1 \\ 1 & ? & 3 & -1 \\ 0 & -1 & ? & -1 \\ 1 & -5 & 5 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & -1 & -1 & 1 \\ -2 & ? & 2 & -2 \\ -1 & 2 & ? & -2 \\ -1 & -1 & -1 & ?\end{array}\right)$
2)

$\left(\begin{array}{cccc}? & 0 & 1 & -1 \\ -3 & ? & 0 & 0 \\ -1 & 0 & ? & 0 \\ 0 & 0 & 0 & ?\end{array}\right) \quad$ 5) $\left.\left(\begin{array}{cccc}? & -1 & 0 & 1 \\ 1 & ? & 0 & 0 \\ 0 & 0 & ? & 0 \\ -1 & -2 & -1 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & 1 & -3 \\ -1 & ? & 0 & -1 \\ 0 & -1 & ? & 0 \\ 0 & 0 & 0 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & -1 & -1 \\ 2 & ? & 2 & 0 \\ 1 & 0 & ? & 0 \\ 0 & -1 & 3 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}0 & -1 & -2 & -1\end{array}\right),\left(\begin{array}{llll}-1 & -1 & 0 & -1\end{array}\right),\left(\begin{array}{llll}0 & 2 & 2 & 0\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3

Exercise 3

Check whether the vector (n -tuple) ($\left.\begin{array}{llll}5 & 7 & 5\end{array}\right)$ is a linear combination of the vectors $\left(\begin{array}{lll}0 & 2 & 2\end{array}\right),\left(\begin{array}{lll}0 & 4 & 4\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation: $\left(x-\left(\begin{array}{cc}-1 & 2 \\ 0 & -1\end{array}\right)\right) \cdot\left(\begin{array}{cc}4 & -1 \\ -3 & 1\end{array}\right)^{-1}=\left(\begin{array}{cc}-1 & -2 \\ -1 & -1\end{array}\right)$

1) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{cc}* & -2 \\ * & *\end{array}\right)$
4) $\left(\begin{array}{cc}* & -1 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{ll}* & 0 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}2 & 0 & 2 & 1 \\ -1 & a & 1 & 1 \\ 1 & 0 & 2 & 0 \\ -1 & 1 & -1 & -1\end{array}\right)$ has determinant -9 ?

1) 4
2) -4
3) 2
4) -5
5) 0

Exercise 6

Find the solution of the linear system
$2 x_{1}+5 x_{2}+3 x_{3}+4 x_{4}-x_{5}=3$
$-4 x_{1}-7 x_{2}+2 x_{3}-7 x_{4}+2 x_{5}=-8$
$-2 x_{1}-2 x_{2}+5 x_{3}-3 x_{4}+x_{5}=-5$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -4\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -5 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -8\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}0 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ 0 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -3 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -8 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 9\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 5\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}? \\ 3 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 1\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 0 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -26\end{array}\right)\right\rangle$
5) $\left(\begin{array}{l}? \\ ? \\ 3 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -3 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -6 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -28\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours
Feed of company $1 \quad 9 \mathrm{~K} \quad 17 \mathrm{~K}$ 24K
Feed of company $2 \quad 3 \mathrm{~K} \quad 4 \mathrm{~K} 9 \mathrm{~K}$
Feed of company $3 \quad 7 \mathrm{~K}$ 13K 19K
Feed of company $4 \quad 6 \mathrm{~K} \quad 11 \mathrm{~K}$ 16K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	
77 K	140 K	fish flours
209 K		

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the
feed, the total number of sacks for every animal has to be equal to 12 .

1) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
3) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
4) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=3$, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 53956072

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 0 & 0 & -1 \\ -1 & 1 & 2 & -1 \\ -1 & 0 & 2 & 0 \\ 0 & 1 & -3 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -4 & 3 & -1 \\ 1 & ? & 2 & -1 \\ 1 & -3 & ? & -1 \\ 0 & 2 & -3 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -2 & -1 & 1 \\ -1 & ? & 0 & 2 \\ 0 & -1 & ? & 2 \\ 2 & -3 & -2 & ?\end{array}\right)$
3) $\left.\left(\begin{array}{cccc}? & -2 & 5 & 2 \\ 3 & ? & 4 & 2 \\ 2 & -1 & ? & 1 \\ 3 & -2 & 5 & ?\end{array}\right) \quad 4\right)$
$\left.\left.\left(\begin{array}{cccc}? & -2 & 1 & 2 \\ 1 & ? & -1 & -1 \\ -3 & -5 & ? & 4 \\ 0 & 0 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -2 & 3 & 4 \\ -1 & ? & -2 & -3 \\ -3 & 3 & ? & 0 \\ 2 & -2 & 0 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & -1 & -1 \\ -1 & ? & 2 & 0 \\ 1 & -1 & ? & 0 \\ 1 & 0 & 0 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & 0 & -2 \\ 1 & ? & 0 & 0 \\ 1 & -1 & ? & -1 \\ 1 & 0 & 0 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}2 & -2 & 0 & -1\end{array}\right),\left(\begin{array}{llll}-1 & 2 & 0 & 1\end{array}\right),\left(\begin{array}{llll}0 & 1 & 2 & -2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3

Exercise 3

Check whether the vector (n-tuple) (090) is a linear combination of the vectors $\left(\begin{array}{lll}0 & -2 & 0\end{array}\right),\left(\begin{array}{lll}0 & -1 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right) \cdot X-\left(\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right)=\left(\begin{array}{cc}0 & -2 \\ 0 & 0\end{array}\right)$

1) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}2 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{cc}* & -2 \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}* & 1 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{ll}* & 2 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & -1 & 0 & -2 \\ 0 & -1 & 1 & 0 \\ 0 & -2 & -1 & -1 \\ 1 & a & 0 & -1\end{array}\right)$ has determinant 11?

1) 3
2) 4
3) -4
4) -3
5) 0

Exercise 6

Find the solution of the linear system
$5 x_{1}-2 x_{2}+2 x_{3}-2 x_{4}-3 x_{5}==1$
$2 x_{1}-4 x_{3}+3 x_{4}+4 x_{5}=4$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}0 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -1 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}5 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -9 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 4 \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -8\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ 17\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -3\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -5\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ ? \\ 13 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ 18\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 6 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 1\end{array}\right)\right\rangle$
$5)\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -11\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -26 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 8 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -2\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

| | Feed of company 1 | Feed of company 2 | Feed of company 3 | Feed of compa |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| animal flours | 2 K | 0 K | 1 K | 1 K |
| vegetable flours | 4 K | 2 K | 3 K | 2 K |
| fish flours | 3 K | 0 K | 2 K | 2 K |

fish flours $3 K$ 2K 2K 2K

The experts of the livestock farm determined
that every week each animal needs the following composition:
animal flours vegetable flours fish flours
6K 27K

12K
How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the
feed, the total number of sacks for every animal has to be equal to 11.

1) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=1$, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=5$, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 74540350

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}3 & 4 & 4 & -1 \\ 2 & 3 & 3 & -1 \\ -1 & -1 & 1 & -1 \\ -2 & -3 & -2 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -7 & 1 & -2 \\ -3 & ? & -1 & 1 \\ 0 & 1 & ? & 1 \\ -1 & 3 & -1 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -1 & 1 & 0 \\ -5 & ? & -2 & 0 \\ 4 & 0 & ? & 0 \\ -2 & 0 & 0 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -1 & 1 & 2 \\ -1 & ? & -1 & -1 \\ 1 & 0 & ? & 0 \\ -2 & 0 & 0 & ?\end{array}\right)$ 4)
$\left(\begin{array}{cccc}? & -1 & 1 & 2 \\ 0 & ? & -1 & -1 \\ -1 & 2 & ? & 0 \\ -1 & 1 & 0 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & 0 & -2 & 3 \\ 2 & ? & -2 & 0 \\ 1 & 0 & ? & 1 \\ 5 & 0 & -3 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & 0 & 0 & -1 \\ -5 & ? & -3 & -4 \\ -3 & -1 & ? & -2 \\ 6 & 2 & 4 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & 0 & 0 & -1 \\ -2 & ? & 0 & 1 \\ 1 & -2 & ? & -1 \\ -3 & 3 & -1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}0 & 2 & -2 & 0\end{array}\right),\left(\begin{array}{llll}-4 & -4 & -2 & 0\end{array}\right),\left(\begin{array}{llll}-2 & -2 & -1 & 0\end{array}\right),\left(\begin{array}{llll}-2 & -1 & 0 & -2\end{array}\right),\left(\begin{array}{llll}0 & -1 & 2 & 1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n-tuple) ($-4-3-4$) is a linear combination of the vectors
$\left(\begin{array}{lll}1 & 2 & 1\end{array}\right),\left(\begin{array}{lll}1 & 1 & 1\end{array}\right),\left(\begin{array}{lll}0 & -1 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right)^{-1} \cdot X-\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}-4 & -2 \\ 1 & 0\end{array}\right)$

1) $\left(\begin{array}{cc}-2 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}0 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}* & -2 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{cc}* & -1 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}2 & 0 & 1 & -1 \\ 2 & 1 & 1 & -1 \\ 2 & 0 & 1 & 0 \\ a & -1 & -2 & 1\end{array}\right)$ has determinant 4?

1) -5
2) 0
3) 1
4) 3
5) -4

Exercise 6

Find the solution of the linear system

$$
\begin{aligned}
& -2 x_{1}+3 x_{2}-x_{3}-2 x_{4}==1 \\
& 3 x_{1}-8 x_{2}+3 x_{3}+5 x_{4}==1 \\
& -x_{1}-2 x_{2}+x_{3}+x_{4}==3
\end{aligned}
$$

taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ ? \\ -7\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 6 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 4 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ ? \\ -9\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ 2\end{array}\right)\right\rangle$
3) $\left.\left(\begin{array}{c}? \\ ? \\ 7 \\ ?\end{array}\right)+\left(\begin{array}{c}? \\ ? \\ ? \\ -3\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 1 \\ ?\end{array}\right)\right\rangle$
4) $\left.\left(\begin{array}{c}? \\ ? \\ ? \\ -6\end{array}\right)+\left(\begin{array}{l}8 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -3 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -9\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -4 \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}-1 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 3 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 3\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

| | Feed of company 1 | Feed of company 2 | Feed of company 3 | Feed of compa |
| :--- | :--- | :--- | :--- | :--- | :--- |
| animal flours | 4 K | 10 K | 45 K | 45 K |
| vegetable flours | 0 K | 1 K | 1 K | 3 K |
| fish flours | 1 K | 3 K | 12 K | 13 K |

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours	fish flours	
167 K	7 K	46 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 8.

1) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
3) Feed $1=$?, Feed $2=1$, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?
5) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 75573701

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}-1 & -1 & 2 & -1 \\ 1 & 0 & -1 & 0 \\ -1 & 1 & -1 & 3 \\ -3 & -1 & 2 & 2\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -2 & 0 & 0 \\ 4 & ? & 2 & -1 \\ 1 & -3 & ? & -1 \\ 2 & -3 & 1 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & 3 & 3 & -2 \\ 1 & ? & 1 & -1 \\ 5 & 2 & ? & -2 \\ 3 & 2 & 2 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -1 & -3 & -1 \\ 0 & ? & 1 & 0 \\ -4 & 1 & ? & 1 \\ 0 & -1 & -1 & ?\end{array}\right)$
2)

$\left.\left(\begin{array}{cccc}? & -1 & 1 & -1 \\ 0 & ? & -1 & 2 \\ -2 & -1 & ? & -1 \\ -1 & -1 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & 1 & 0 \\ 0 & ? & -1 & -1 \\ 0 & -5 & ? & 4 \\ 1 & 0 & 0 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 11 & 3 \\ 2 & ? & -3 & -4 \\ 1 & 0 & ? & 1 \\ 0 & 0 & 2 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & -1 & -1 \\ 0 & ? & 1 & 0 \\ -1 & -1 & ? & 1 \\ 0 & 2 & 1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-2 & -1 & 1 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}2 & 2 & -2 & 1 & 1\end{array}\right),\left(\begin{array}{lllll}0 & 0 & 1 & 2 & -1\end{array}\right),\left(\begin{array}{lllll}-1 & 0 & 1 & 2 & -2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) ($4-4-19$) is a linear combination of the vectors $\left(\begin{array}{llll}-4 & -2 & 2 & 0\end{array}\right),\left(\begin{array}{llll}-2 & -1 & 1 & 0\end{array}\right),\left(\begin{array}{llll}1 & -1 & 0 & 1\end{array}\right),\left(\begin{array}{llll}0 & 1 & 2 & -1\end{array}\right)$,

1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 1\end{array}\right) \cdot X+\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -1 \\ -1 & 1 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 1 \\ 5 & 1 & -3 \\ -4 & 0 & 4\end{array}\right)$

1) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & * & 1 \\ * & * & * \\ * & * & *\end{array}\right) \quad$ 5) $\left(\begin{array}{ccc}* & * & * \\ -2 & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & 0 & 0 & -1 \\ a & 1 & 2 & 0 \\ -2 & 1 & 0 & 1 \\ 1 & -2 & 1 & 0\end{array}\right)$ has determinant 3 ?

1) 0
2) -5
3) 5
4) 4
5) -2

Exercise 6

Find the solution of the linear system
$3 x_{1}-x_{3}=-4$
$8 x_{1}-5 x_{2}-2 x_{3}==1$
$-11 x_{1}+7 x_{2}+3 x_{3}==1$
$-4 x_{1}+2 x_{2}+x_{3}=0$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ 10\end{array}\right)$
2) $\left(\begin{array}{l}1 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-7 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -2 \\ ?\end{array}\right),\left(\begin{array}{l}1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -2\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ -7 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 7 \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}3 \\ ? \\ ?\end{array}\right)$
5) $\left(\begin{array}{l}? \\ ? \\ 8\end{array}\right)$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	6 K	13 K	4 K
Feed of company 2	7 K	15 K	4 K
Feed of company 3	7 K	16 K	5 K
Feed of company 4	4 K	9 K	3 K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours	fish flours	
66 K	145 K	44 K

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
3) Feed $1=3$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
5) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 77379111

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}0 & -1 & -1 & 0 \\ 1 & 4 & 3 & -1 \\ 0 & 0 & 1 & 0 \\ -1 & -4 & -6 & 2\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & 2 & 4 & 1 \\ -1 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ 0 & 1 & 3 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -2 & -5 & -2 \\ 1 & ? & -2 & -1 \\ 0 & -1 & ? & 0 \\ -1 & 3 & 2 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -2 & 0 & 0 \\ 0 & ? & -1 & -1 \\ 1 & -1 & ? & 0 \\ 0 & -1 & 1 & ?\end{array}\right)$ 4)
$\left.\left.\left.\left(\begin{array}{cccc}? & -1 & 0 & 0 \\ -3 & ? & 0 & 1 \\ -3 & 1 & ? & 1 \\ 0 & 0 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & 0 & -1 & 2 \\ -2 & ? & 2 & -2 \\ 0 & 0 & ? & 1 \\ 0 & 0 & 0 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & 0 & 0 & -1 \\ -1 & ? & -1 & 1 \\ -1 & 0 & ? & 2 \\ -1 & 0 & -1 & ?\end{array}\right) \quad 7\right)\left(\begin{array}{cccc}? & 0 & 0 & 1 \\ -1 & ? & -2 & -4 \\ -1 & 1 & ? & 0 \\ 1 & -3 & 3 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
 are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n-tuple) ($22-58$ is a linear combination of the vectors $\left(\begin{array}{llll}1 & 0 & 0 & 2\end{array}\right),\left(\begin{array}{llll}1 & 0 & 2 & 2\end{array}\right),\left(\begin{array}{llll}-2 & 2 & 1 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(X+\left(\begin{array}{ccc}1 & 0 & 1 \\ -2 & 1 & 1 \\ 1 & -1 & -1\end{array}\right)\right) \cdot\left(\begin{array}{ccc}-1 & -2 & 1 \\ 1 & 1 & 0 \\ 0 & -1 & 2\end{array}\right)=\left(\begin{array}{ccc}-2 & -3 & 1 \\ 4 & 5 & 0 \\ -2 & 0 & -4\end{array}\right)$

1) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}2 & * & * \\ * & \star & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & * & 0 \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & * & 1 \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & a & -2 & 2 \\ 0 & 1 & -1 & -1 \\ 1 & -2 & 1 & 1 \\ -2 & -1 & 0 & 1\end{array}\right)$ has determinant -14 ?

1) -1
2) 0
3) 1
4) 3
5) -3

Exercise 6

Find the solution of the linear system
$7 x_{1}+x_{3}+x_{4}=-6$
$x_{1}+7 x_{2}+3 x_{3}+9 x_{4}=4$
$-x_{1}+2 x_{2}+x_{3}+3 x_{4}==0$
$-4 x_{1}-8 x_{2}-4 x_{3}-11 x_{4}=-1$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say,
apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ -3 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -13 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ -2 \\ ? \\ ?\end{array}\right)$
3) $\left(\begin{array}{l}? \\ 4 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ 8\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ ? \\ ? \\ -2\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -4\end{array}\right),\left(\begin{array}{l}2 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{l}? \\ 2 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -12 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	4 K	0 K	3 K
Feed of company 2	10 K	2 K	5 K
Feed of company 3	4 K	1 K	2 K
Feed of company 4	7 K	1 K	4 K

The experts of the livestock farm determined
that every week each animal needs the following composition:
animal flours vegetable flours fish flours

44K
How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 4 to be equal to 4.

1) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
3) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
4) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 77388334

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 1 & 2 \\ 0 & 0 & -1 & 2\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -5 & 0 & -4 \\ 0 & ? & 1 & 0 \\ -1 & 3 & ? & 1 \\ 2 & -2 & 1 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -5 & 1 & 0 \\ -1 & ? & -1 & -1 \\ -3 & 6 & ? & -1 \\ -1 & 1 & 0 & ?\end{array}\right)$
3) $\left.\left(\begin{array}{cccc}? & -3 & 1 & 2 \\ 1 & ? & 0 & 1 \\ 0 & 1 & ? & -1 \\ 0 & -1 & 0 & ?\end{array}\right) \quad 4\right)$
$\left.\left.\left(\begin{array}{cccc}? & -2 & -2 & 1 \\ -1 & ? & 1 & 0 \\ -2 & 2 & ? & -1 \\ -1 & 1 & 1 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & -1 & 0 \\ 1 & ? & -2 & 1 \\ -1 & 2 & ? & -1 \\ -1 & 1 & 1 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & 0 & -1 \\ 1 & ? & -2 & 0 \\ 0 & 1 & ? & -1 \\ -2 & -1 & 1 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & 1 & 0 \\ 0 & ? & -1 & 1 \\ 0 & 0 & ? & 1 \\ 1 & 3 & -2 & ?\end{array}\right)$

Exercise 2
How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}1 & 2 & -1 & -2 & 0\end{array}\right),\left(\begin{array}{lllll}0 & 1 & 1 & 1 & -1\end{array}\right),\left(\begin{array}{lllll}2 & -2 & 0 & 0 & -2\end{array}\right)$
, ($\left.1 \begin{array}{lllll}1 & -2 & -1 & -1\end{array}\right),\left(\begin{array}{lllll}-2 & 3 & 1 & 1 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 2 & 0 & 2 & -1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5
6) 6

Exercise 3

Check whether the vector (n-tuple) ($\left.\begin{array}{llll}4 & 1 & 4 & 9\end{array}\right)$ is a linear combination of the vectors
$\left(\begin{array}{llll}2 & 1 & -2 & -2\end{array}\right),\left(\begin{array}{llll}4 & 2 & -4 & -4\end{array}\right),\left(\begin{array}{llll}2 & 2 & -2 & 0\end{array}\right),\left(\begin{array}{llll}0 & 1 & 0 & 2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(X+\left(\begin{array}{ccc}0 & -1 & -2 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)\right) \cdot\left(\begin{array}{ccc}0 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1\end{array}\right)=\left(\begin{array}{ccc}2 & 1 & -2 \\ 0 & 0 & 1 \\ -1 & -1 & 4\end{array}\right)$

1) $\left(\begin{array}{ccc}-2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{ccc}* & -1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & a & -2 & 1 \\ 0 & 1 & -2 & 3 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & -2\end{array}\right)$ has determinant -4 ?

1) -1
2) -4
3) 1
4) -5
5) 2

Exercise 6

Find the solution of the linear system
$2 x_{1}+x_{2}-x_{3}-3 x_{4}=-5$
$x_{2}-x_{3}+7 x_{4}=3$
$2 x_{1}+2 x_{2}-3 x_{3}-x_{4}=0$
$-x_{1}-x_{2}+2 x_{3}+3 x_{4}=-1$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ -1 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -3 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ ? \\ ? \\ 0\end{array}\right)+\left\langle\left(\begin{array}{l}5 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ -1 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -11 \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ -1 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -10 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -8\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}? \\ -3 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-5 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -6 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 9 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	12 K	2 K	7 K
Feed of company 2	49 K	8 K	29 K
Feed of company 3	32 K	5 K	19 K
Feed of company 4	24 K	4 K	14 K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
257K	41K	152K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9 .

1) Feed $1=$?, Feed $2=$?, Feed $3=3$, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
3) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 77434209

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{llll}1 & 3 & 2 & 1 \\ 0 & 2 & 1 & 0 \\ 3 & 4 & 6 & 6 \\ 2 & 3 & 4 & 4\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -7 & 9 & -3 \\ 1 & ? & 5 & -2 \\ -2 & -1 & ? & 0 \\ 0 & 2 & -2 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -3 & -6 & -1 \\ 0 & ? & 2 & 0 \\ 0 & 0 & ? & -1 \\ 0 & 0 & 0 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -2 & -1 & 7 \\ 0 & ? & 0 & 1 \\ 0 & -1 & ? & 2 \\ 0 & -1 & 0 & ?\end{array}\right) \quad$ 4)
$\left.\left(\begin{array}{cccc}? & -2 & 1 & -2 \\ 0 & ? & -2 & 3 \\ 0 & 1 & ? & -6 \\ -1 & 0 & -3 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -2 & 0 & 2 \\ 2 & ? & 0 & -1 \\ -2 & -1 & ? & 2 \\ 1 & 1 & 2 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -2 & 1 & 3 \\ -1 & ? & 0 & 1 \\ 3 & 2 & ? & -2 \\ 0 & 0 & 0 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & -1 & -2 \\ -2 & ? & -1 & 2 \\ -2 & 1 & ? & 4 \\ -1 & -1 & -1 & ?\end{array}\right)$
Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}-2 & 2 & 1 & 2\end{array}\right),\left(\begin{array}{llll}0 & 1 & -1 & 0\end{array}\right),\left(\begin{array}{llll}-1 & -2 & -2 & -1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3

Exercise 3

Check whether the vector (n-tuple) (-526) is a linear combination of the vectors
$\left(\begin{array}{lll}1 & -2 & 2\end{array}\right),\left(\begin{array}{lll}2 & -2 & 0\end{array}\right),\left(\begin{array}{lll}1 & 0 & -2\end{array}\right),\left(\begin{array}{lll}-1 & 0 & 2\end{array}\right)$,

1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation: $\left(\begin{array}{cc}-1 & 0 \\ -1 & -1\end{array}\right) \cdot X \cdot\left(\begin{array}{ll}7 & 4 \\ 5 & 3\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right)$

1) $\left(\begin{array}{cc}-2 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}2 & * \\ * & *\end{array}\right)$
5) $\left(\begin{array}{ll}* & 0 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & -1 & 0 & 2 \\ 0 & 1 & -1 & a \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$ has determinant 4?

1) 0
2) 2
3) 1
4) -1
5) 5

Exercise 6

Find the solution of the linear system
$-2 x_{1}-4 x_{2}+7 x_{3}+4 x_{4}=-3$
$-7 x_{1}-3 x_{2}+2 x_{3}+x_{4}=-8$
$5 x_{1}-x_{2}+5 x_{3}+3 x_{4}=5$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ -4 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -6\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 8 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 0 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}1 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -48\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 11 \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ 47\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -44\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -11\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ ? \\ 8\end{array}\right)$
4) $\left(\begin{array}{l}0 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ 26 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -13\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	$2 K$	$1 K$	$2 K$
Feed of company 2	$9 K$	$5 K$	$9 K$
Feed of company 3	$9 K$	$5 K$	$10 K$
Feed of company 4	$10 K$	$5 K$	$5 K$

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours fish flours		
85 K	45 K	75 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 13.

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
2) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=4$, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=3$
5) Feed $1=3$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 77435467

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 1 & 0 & 1 \\ -1 & 0 & 0 & -1 \\ 1 & 0 & 2 & 0 \\ 1 & 1 & -1 & 2\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -2 & -1 & -2 \\ 1 & ? & 0 & 0 \\ -1 & 1 & ? & 1 \\ -2 & 1 & 1 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -1 & -1 & -2 \\ 3 & ? & -2 & -4 \\ -2 & 1 & ? & 0 \\ -3 & 2 & 1 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & -1 & 0 & -3 \\ -1 & ? & 0 & 3 \\ 0 & -1 & ? & 0 \\ 1 & 0 & 0 & ?\end{array}\right)$ 4)
$\left(\begin{array}{cccc}? & -1 & 3 & 3 \\ 2 & ? & 1 & 2 \\ -1 & 0 & ? & -1 \\ 5 & 1 & 4 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & 0 & -2 & -1 \\ 1 & ? & 1 & 1 \\ 2 & -1 & ? & 1 \\ 2 & -1 & -1 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & 0 & -1 & -1 \\ -1 & ? & 0 & 1 \\ 1 & 2 & ? & -1 \\ 0 & -2 & -1 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & -1 & 0 \\ 0 & ? & 2 & 0 \\ 0 & 1 & ? & 0 \\ -1 & 1 & 3 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-1 & 0 & 1 & -2 & -1\end{array}\right),\left(\begin{array}{lllll}-3 & 0 & 2 & -2 & -2\end{array}\right),\left(\begin{array}{lllll}0 & -2 & 2 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}-1 & -1 & 0 & -1 & -1\end{array}\right),\left(\begin{array}{lllll}2 & 0 & -1 & 0 & 1\end{array}\right)$, are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n -tuple) ($\left.\begin{array}{cccc}-7 & 2 & -6 & 3\end{array}\right)$ is a linear combination of the vectors $\left(\begin{array}{llll}1 & 0 & 1 & -1\end{array}\right),\left(\begin{array}{llll}1 & -1 & 0 & 2\end{array}\right),\left(\begin{array}{llll}2 & -1 & 2 & -2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(X+\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 2 & 1\end{array}\right)\right) \cdot\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & 2 & -1 \\ -1 & -3 & 2\end{array}\right)=\left(\begin{array}{ccc}1 & 3 & -2 \\ 0 & 0 & 0 \\ 1 & 8 & -5\end{array}\right)$

1) $\left(\begin{array}{ccc}* & -2 & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}* & 0 & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}* & 2 & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{ccc}* & * & * \\ -2 & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{ccc}* & * & * \\ -1 & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 0 & 1 & 0 \\ a & -2 & 1 & 2\end{array}\right)$ has determinant 1?

1) 0
2) 5
3) -2
4) -3
5) 1

Exercise 6

Find the solution of the linear system
$-x_{1}-x_{2}=7$
$-2 x_{1}+3 x_{2}-x_{3}=-4$
$x_{1}-2 x_{2}+x_{3}=-3$
$x_{1}-x_{2}+x_{3}=-1$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ 1 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -5\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ -5 \\ ?\end{array}\right)$
3) $\left(\begin{array}{c}? \\ -4 \\ ?\end{array}\right)$
4) $\left(\begin{array}{l}? \\ 9 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 1\end{array}\right),\left(\begin{array}{l}? \\ 5 \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}-1 \\ ? \\ ?\end{array}\right)$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

Feed of company 1 Feed of company 2 Feed of company 3

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of comp
animal flours	4 K	11 K	8 K	8 K
vegetable flours	4 K	15 K	10 K	13 K
fish flours	1 K	5 K	3 K	5 K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours		
75 K	fish flours 105 K	fik

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 8 .

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
2) Feed $1=$?, Feed $2=2$, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=3$, Feed $3=$?, Feed $4=$?
4) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 77647383

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}2 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & -1 & 2 & -1 \\ -2 & 0 & -1 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & 0 & -1 & -1 \\ 0 & ? & 0 & 0 \\ -1 & 1 & ? & 2 \\ 1 & 1 & 0 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -4 & -4 & 3 \\ -1 & ? & 2 & -1 \\ 1 & -3 & ? & 2 \\ 0 & -1 & -1 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & -4 & -1 & -2 \\ -1 & ? & -1 & 1 \\ 0 & 4 & ? & 2 \\ 1 & -1 & 0 & ?\end{array}\right)$ 4) $\left(\begin{array}{cccc}? & -2 & -7 & 4 \\ 1 & ? & 5 & -2 \\ 1 & 2 & ? & -3 \\ 0 & 1 & 2 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & -1 & 0 & -1 \\ 1 & ? & 1 & 1 \\ 1 & 1 & ? & 1 \\ 1 & -1 & 1 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 0 & 2 \\ 1 & ? & -1 & -2 \\ 0 & 2 & ? & 0 \\ 0 & 1 & 0 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & 1 & 0 \\ -5 & ? & 3 & 2 \\ 1 & -1 & ? & 0 \\ -3 & 1 & 1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-2 & 1 & 1 & -1 & -1\end{array}\right),\left(\begin{array}{lllll}2 & 1 & -1 & 2 & 2\end{array}\right),\left(\begin{array}{lllll}0 & -2 & -1 & 2 & 0\end{array}\right),\left(\begin{array}{lllll}-1 & 0 & 2 & -1 & 1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) ($2-3-95$) is a linear combination of the vectors $\left(\begin{array}{lll}-1 & -2 & -1\end{array} 0\right),\left(\begin{array}{llll}-2 & -4 & -2 & 0\end{array}\right),\left(\begin{array}{lll}-2 & -2 & -1\end{array}-1\right),\left(\begin{array}{llll}1 & 1 & -2 & 1\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right) \cdot\left(X-\left(\begin{array}{ccc}2 & -1 & 0 \\ 2 & -2 & 1 \\ 1 & -1 & 0\end{array}\right)\right)=\left(\begin{array}{ccc}-3 & 1 & 4 \\ -4 & 2 & 2 \\ -2 & 1 & 1\end{array}\right)$

1) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & * & -1 \\ * & * & * \\ * & * & *\end{array}\right) \quad$ 5) $\left(\begin{array}{ccc}* & * & * \\ -2 & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-2 & 0 & 1 & 1 \\ -2 & -1 & 1 & a \\ 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 2\end{array}\right)$ has determinant 2?

1) 3
2) -4
3) 5
4) 1
5) 0

Exercise 6

Find the solution of the linear system
$-x_{1}+x_{3}+4 x_{4}=-4$
$3 x_{1}-2 x_{2}-x_{3}+2 x_{4}=0$
$-x_{1}+2 x_{2}-2 x_{4}==1$
$2 x_{1}+x_{2}-x_{3}+x_{4}=-4$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ 2 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-2 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ -2 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -2\end{array}\right),\left(\begin{array}{c}? \\ -3 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -7\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -10 \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ -10\end{array}\right)+\left\langle\left(\begin{array}{c}-4 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -10 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -9 \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ ? \\ 0\end{array}\right)+\left\langle\left(\begin{array}{c}-4 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}? \\ 4 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-1 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
Feed of company 1 Feed of company 2 Feed of company 3
animal flours
vegetable flours
fish flours

$3 K$	$1 K$
$2 K$	$1 K$

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours	fish flours 45 K	15 K
72 K		

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 13.

1) Feed $1=$?, Feed $2=$?, Feed $3=3$, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=4$, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=5$, Feed $4=$?
4) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 77648906

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 1 & 0 & 1 \\ 1 & 3 & 0 & 2 \\ 0 & -3 & 1 & -1 \\ 2 & 3 & 0 & 3\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & 0 & 0 & -1 \\ 1 & ? & 0 & -1 \\ 0 & 2 & ? & -1 \\ -3 & -1 & 0 & ?\end{array}\right) \quad$ 2) $\left(\begin{array}{cccc}? & -3 & 1 & 1 \\ -1 & ? & 1 & 0 \\ -1 & -3 & ? & 2 \\ 1 & 2 & 0 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -3 & 3 & -1 \\ 0 & ? & -5 & 4 \\ 0 & -6 & ? & -3 \\ 0 & 1 & -1 & ?\end{array}\right)$ 4)
$\left.\left(\begin{array}{cccc}? & -2 & 0 & 0 \\ 0 & ? & 1 & -1 \\ 0 & 1 & ? & -1 \\ 1 & -3 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & 0 & -1 \\ 1 & ? & 0 & 3 \\ -1 & -1 & ? & -1 \\ 0 & 0 & 1 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 0 & 1 \\ 1 & ? & 1 & 0 \\ -1 & 0 & ? & -1 \\ 3 & -1 & -2 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & 1 & 0 \\ 1 & ? & 0 & 0 \\ -5 & 1 & ? & -1 \\ -3 & 1 & 3 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-2 & -2 & -1 & 1 & 0\end{array}\right),\left(\begin{array}{lllll}-1 & 0 & -2 & 2 & 2\end{array}\right),\left(\begin{array}{lllll}1 & 2 & -1 & 1 & 2\end{array}\right),\left(\begin{array}{lllll}1 & -1 & 0 & 0 & 1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n-tuple) ($-3-3-7-9$) is a linear combination of the vectors $\left(\begin{array}{llll}0 & 4 & -2 & 0\end{array}\right),\left(\begin{array}{llll}0 & 2 & -1 & 0\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}0 & 1 & -1 \\ 2 & 0 & 1 \\ -1 & -1 & 0\end{array}\right) \cdot\left(X-\left(\begin{array}{ccc}-2 & 2 & 5 \\ -1 & 1 & 2 \\ -1 & 0 & 2\end{array}\right)\right)=\left(\begin{array}{ccc}0 & -1 & 0 \\ 7 & -1 & -9 \\ -4 & 1 & 5\end{array}\right)$

1) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}* & * & 0 \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}* & * & * \\ 1 & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & * & * \\ 2 & * & * \\ * & * & *\end{array}\right) \quad$ 5) $\left(\begin{array}{ccc}* & * & * \\ * & * & -1 \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-2 & 1 & 0 & -2 \\ -1 & -1 & 0 & 3 \\ a & 0 & 2 & 1 \\ -1 & 2 & 1 & -3\end{array}\right)$ has determinant 13 ?

1) $0 \quad$ 2) $3 \begin{array}{llllll}\text { 3) } & 4 & 4) & -1 & 5) & -4\end{array}$

Exercise 6

Find the solution of the linear system
$-5 x_{1}+2 x_{2}+2 x_{3}+2 x_{4}+5 x_{5}=-1$
$-12 x_{1}+5 x_{2}+4 x_{3}-4 x_{4}-4 x_{5}=-3$
$x_{1}-x_{2}+x_{3}+15 x_{4}+15 x_{5}=-4$
$4 x_{1}-2 x_{2}-x_{3}+5 x_{4}-4 x_{5}=-4$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ ? \\ 8 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -14 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -34 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}11 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-4 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -32 \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}14 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -1 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-29 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ ? \\ -7 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -9\end{array}\right),\left(\begin{array}{l}7 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 9 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{l}? \\ ? \\ ? \\ 4 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -5 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 0 \\ ?\end{array}\right),\left(\begin{array}{l}9 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -10 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours

Feed of company 1	$4 K$	$10 K$	$5 K$
Feed of company 2	3 K	5 K	3 K
Feed of company 3	1 K	3 K	1 K
Feed of company 4	4 K	11 K	5 K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours		
27 K	f4K	fish flours 33 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9 .

1) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
3) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=3$
5) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 77770524

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 3 & 0 & 0 \\ -3 & -2 & 2 & 1 \\ -4 & -3 & 3 & 1 \\ 2 & 3 & -1 & 0\end{array}\right)$.

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}0 & 0 & 2 & 2 & 0\end{array}\right),\left(\begin{array}{lllll}0 & -2 & -2 & -1 & -2\end{array}\right),\left(\begin{array}{lllll}-2 & 1 & -2 & 1 & 1\end{array}\right),\left(\begin{array}{lllll}-2 & 1 & -2 & 2 & -1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) ($8-8 \quad 0-1$) is a linear combination of the vectors $\left(\begin{array}{llll}-4 & 4 & -2 & -4\end{array}\right),\left(\begin{array}{llll}-2 & 2 & -1 & -2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(X-\left(\begin{array}{lll}2 & 3 & 3 \\ 1 & 2 & 2 \\ 3 & 6 & 7\end{array}\right)\right) \cdot\left(\begin{array}{ccc}1 & -1 & 2 \\ -2 & 3 & -2 \\ -1 & 1 & -1\end{array}\right)^{-1}=\left(\begin{array}{ccc}-1 & -4 & 8 \\ 1 & -3 & 9 \\ -5 & -9 & 16\end{array}\right)$

1) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{ccc}* & -1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}* & * & 0 \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & * & * \\ 1 & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{ccc}* & * & * \\ -1 & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 1 & 1 & -2 & -2 \\ 2 & 1 & -1 & a\end{array}\right)$ has determinant 3 ?

1) 1 | | 2) 0 | $3)$ | 4 | $4)$ | -5 | $5)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Exercise 6

Find the solution of the linear system
$x_{1}+7 x_{3}-5 x_{4}-14 x_{5}=-5$
$-x_{2}-4 x_{3}+3 x_{4}+8 x_{5}=0$
$5 x_{1}+2 x_{2}+4 x_{3}-2 x_{4}-7 x_{5}=0$
$6 x_{1}+3 x_{3}-x_{4}-5 x_{5}=-5$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ 28 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ -3\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -10 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ 3 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -4\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -10\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ -20 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -5 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 7 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ ? \\ -6 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 7 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -9 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 2 \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ ? \\ -8 \\ ? \\ ?\end{array}\right)$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours

Feed of company $1 \quad 5 \mathrm{~K} \quad 14 \mathrm{~K} \quad 22 \mathrm{~K}$
Feed of company $2 \quad 1 \mathrm{~K} \quad 3 \mathrm{~K} 5 \mathrm{~K}$
Feed of company $3 \quad 11 \mathrm{~K} 30 \mathrm{~K} 47 \mathrm{~K}$

Feed of company 4 11K 31 K 50K
The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours		
88 K	243 K	fish flours
383 K		

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12 .

1) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
2) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
5) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 78026316

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & -2 & -1 & 1 \\ -1 & 2 & 2 & -2 \\ 0 & 0 & 0 & 1 \\ 1 & -1 & -1 & 2\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & 1 & -2 & 2 \\ -1 & ? & -1 & 1 \\ 1 & 1 & ? & 0 \\ 0 & 0 & 1 & ?\end{array}\right) \quad$ 2) $\left(\begin{array}{cccc}? & -2 & -3 & 1 \\ 0 & ? & 0 & 1 \\ 0 & -1 & ? & 0 \\ 0 & -1 & -2 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -2 & 3 & -2 \\ -2 & ? & -1 & 1 \\ 3 & -1 & ? & -1 \\ -8 & 3 & -4 & ?\end{array}\right)$
3)

$\left.\left(\begin{array}{cccc}? & -1 & -2 & 1 \\ -4 & ? & 4 & -2 \\ 0 & 0 & ? & 0 \\ 1 & 0 & -1 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & 1 & -1 \\ -1 & ? & 0 & 0 \\ 1 & -2 & ? & -2 \\ 0 & 0 & 1 & ?\end{array}\right.$
6) $\left(\begin{array}{cccc}? & -1 & 2 & 0 \\ -1 & ? & 2 & 0 \\ -1 & 1 & ? & -1 \\ 1 & -1 & -2 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & -1 & 3 & -1 \\ -2 & ? & 3 & -1 \\ -1 & -2 & ? & -1 \\ 0 & -1 & 1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}-3 & -1 & 2 & -1\end{array}\right),\left(\begin{array}{llll}1 & 0 & -1 & 1\end{array}\right),\left(\begin{array}{llll}1 & -1 & -2 & -2\end{array}\right),\left(\begin{array}{llll}-2 & -1 & 1 & 0\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) ($6-3-1$) is a linear combination of the vectors
$\left(\begin{array}{lll}1 & 1 & 0\end{array}\right),\left(\begin{array}{lll}-2 & 2 & 2\end{array}\right),\left(\begin{array}{lll}-1 & 1 & -1\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \cdot X \cdot\left(\begin{array}{cc}2 & -3 \\ -3 & 5\end{array}\right)=\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)$

1) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{cc}* & -2 \\ * & *\end{array}\right)$
4) $\left(\begin{array}{cc}* & -1 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{ll}* & 1 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}0 & -2 & 0 & -1 \\ 1 & -1 & 1 & 0 \\ 1 & a & 1 & -2 \\ 0 & 2 & 1 & -2\end{array}\right)$ has determinant 9?

1) 4
2) -1
3) -5
4) -3
5) -2

Exercise 6

Find the solution of the linear system
$2 x_{1}-3 x_{2}+4 x_{3}+5 x_{4}=-3$
$x_{2}+8 x_{3}+7 x_{4}=-1$
$-3 x_{1}+5 x_{2}-2 x_{3}-4 x_{4}=4$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ 6 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -4\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 9\end{array}\right),\left(\begin{array}{c}? \\ -1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 9 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ ? \\ -3\end{array}\right)+\left\langle\left(\begin{array}{c}-12 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -4 \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ 0 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-14 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -7 \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ -6 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 9 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-5 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 5\end{array}\right)\right\rangle$
5) $\left(\begin{array}{l}? \\ ? \\ ? \\ 1\end{array}\right)+\left\langle\left(\begin{array}{c}-11 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -5 \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

| | Feed of company 1 | Feed of company 2 | Feed of company 3 | Feed of compa |
| :--- | :--- | :--- | :--- | :--- | :--- |
| animal flours | 5 K | 12 K | 4 K | 7 K |
| vegetable flours | 2 K | 5 K | 2 K | 3 K |
| fish flours | 9 K | 20 K | 7 K | 12 K |

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours		
53 K	23 K	fish flours 90 K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 2 to be equal to 2 .

1) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
3) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
5) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 78428692

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}0 & -1 & 0 & -1 \\ -1 & -5 & 2 & -2 \\ -2 & -8 & 3 & -3 \\ 2 & 3 & 0 & 2\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -4 & -1 & -3 \\ 0 & ? & 1 & 1 \\ -1 & 2 & ? & 1 \\ -2 & 3 & 1 & ?\end{array}\right) \quad$ 2) $\left(\begin{array}{cccc}? & -3 & 2 & 1 \\ -2 & ? & -4 & -1 \\ -3 & 8 & ? & -1 \\ 1 & -6 & 4 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -2 & 1 & 2 \\ 0 & ? & 2 & 2 \\ 0 & -1 & ? & 1 \\ 0 & -4 & 4 & ?\end{array}\right) \quad$ 4) $\left.\left.\left(\begin{array}{cccc}? & 0 & -2 & 0 \\ -1 & ? & 2 & 1 \\ -1 & -1 & ? & 0 \\ 0 & 0 & -1 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & 0 & 0 & 1 \\ 0 & ? & -1 & 0 \\ 0 & 0 & ? & -1 \\ 0 & 0 & 1 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & 0 & 0 & 1 \\ 0 & ? & 1 & 2 \\ 0 & -1 & ? & 2 \\ 0 & 1 & -3 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & 0 & 2 & -1 \\ -1 & ? & -1 & 1 \\ 0 & 0 & ? & 0 \\ -2 & -1 & -2 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}-1 & 1 & 1 & 0\end{array}\right),\left(\begin{array}{llll}-2 & 2 & 1 & 0\end{array}\right),\left(\begin{array}{llll}-1 & 2 & -2 & -1\end{array}\right),\left(\begin{array}{llll}-1 & 1 & 0 & 0\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) (5-9-7) is a linear combination of the vectors $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}2 & -1 & 2\end{array}\right),\left(\begin{array}{lll}-3 & -1 & -1\end{array}\right),\left(\begin{array}{lll}-4 & 0 & -3\end{array}\right),\left(\begin{array}{lll}-2 & -1 & -1\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:

```
(cc}\begin{array}{cc}{2}&{1}\\{-5}&{-2}\end{array})\cdotX\cdot(\begin{array}{ll}{3}&{-2}\\{2}&{-1}\end{array}\mp@subsup{)}{}{-1}=(\begin{array}{cc}{5}&{-7}\\{-12}&{17}\end{array}
```

1) $\left(\begin{array}{cc}-2 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}2 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}* & 1 \\ * & *\end{array}\right)$
4) $\left(\begin{array}{cc}* & -1 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{cc}* & * \\ -1 & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}0 & -1 & 1 & 1 \\ 2 & 3 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ a & 1 & -1 & 1\end{array}\right)$ has determinant 7?

1) 0
2) -1
3) 3
4) -5
5) 4

Exercise 6

Find the solution of the linear system

$$
\begin{aligned}
& -x_{1}+5 x_{2}+2 x_{3}+x_{4}=-1 \\
& 7 x_{2}+7 x_{3}+3 x_{4}=-1 \\
& -x_{1}-2 x_{2}-5 x_{3}-2 x_{4}==0
\end{aligned}
$$

taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}0 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -3 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -21\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}-2 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -2 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -23\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ -8 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ 1\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ -1 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ 4\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 6 \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}? \\ 10 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ 5\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -8 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -3 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -6 \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	11 K	7 K	9 K
Feed of company 2	21 K	14 K	19 K
Feed of company 3	18 K	11 K	13 K
Feed of company 4	33 K	22 K	30 K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
277K	179K	233K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 15 .

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
2) Feed $1=$?, Feed $2=$?, Feed $3=2$, Feed $4=$?
3) Feed $1=$?, Feed $2=3$, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=4$, Feed $4=$?
5) Feed $1=$?, Feed $2=1$, Feed $3=$?, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 753486173

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 2 & 1 & 1 & 2\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -1 & -3 & 0 \\ 1 & ? & 1 & 0 \\ -3 & -2 & ? & 2 \\ -2 & -1 & -3 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & 1 & 0 & -1 \\ -2 & ? & -1 & 3 \\ 0 & 2 & ? & -2 \\ 0 & -1 & 0 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & -1 & 4 & 1 \\ 0 & ? & -2 & 0 \\ 1 & -1 & ? & 0 \\ -1 & 0 & -3 & ?\end{array}\right)$ 4
$\left.\left.\left(\begin{array}{cccc}? & 0 & -1 & 0 \\ 0 & ? & 0 & -1 \\ -1 & -1 & ? & 0 \\ -1 & 2 & 1 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & 0 & 0 & -1 \\ -5 & ? & -1 & 1 \\ 9 & -4 & ? & -2 \\ -5 & 4 & -1 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & 0 & 0 & -1 \\ 0 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ 1 & 0 & -1 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & 0 & 0 \\ 2 & ? & 0 & 1 \\ -2 & 0 & ? & 0 \\ 0 & -1 & 1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}2 & -1 & -2 & -1 & 2\end{array}\right),\left(\begin{array}{lllll}-1 & -1 & 2 & 1 & 1\end{array}\right),\left(\begin{array}{lllll}0 & -1 & 1 & -2 & -1\end{array}\right),\left(\begin{array}{lllll}0 & -1 & -2 & -1 & 2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) (065 L) is a linear combination of the vectors $\left(\begin{array}{llll}-1 & -2 & -1 & 2\end{array}\right),\left(\begin{array}{llll}-1 & 0 & -1 & 1\end{array}\right),\left(\begin{array}{llll}-3 & -3 & -2 & 1\end{array}\right),\left(\begin{array}{llll}2 & 1 & 1 & 0\end{array}\right),\left(\begin{array}{lll}-2 & -1 & -1\end{array}-1\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right) \cdot X \cdot\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{ccc}-1 & 2 & -1 \\ 3 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$

1) $\left(\begin{array}{ccc}-2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{ccc}* & * & -1 \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}0 & 2 & -1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & a & 1 \\ 1 & 2 & -2 & 1\end{array}\right)$ has determinant -2 ?

1) -3
2) -1
3) -2
4) $3 \quad 5$) -4

Exercise 6

Find the solution of the linear system
$2 x_{1}+3 x_{2}+2 x_{3}+x_{4}=-2$
$-3 x_{1}-4 x_{2}-3 x_{3}+5 x_{4}=4$
$-3 x_{1}-7 x_{3}+5 x_{4}=-8$
$2 x_{1}+2 x_{2}+3 x_{3}+x_{4}=1$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ 5 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}32 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ -7 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 7 \\ ?\end{array}\right),\left(\begin{array}{l}4 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}-2 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-5 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -4 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 2 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -7\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ 4 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -10 \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ ? \\ ? \\ -3\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -10 \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

Feed of company 1	Feed of company 2	Feed of company 3	Feed of comp
$9 K$	10 K	22 K	57 K
4 K	4 K	9 K	23 K
0 K		2 K	6 K

animal flours vegetable flours fish flours

0K
1K
2K
6K
The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
272K	111K	25K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12 .

1) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
2) Feed $1=$?, Feed $2=2$, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=4$, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=5$, Feed $4=$?
5) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 10618500094

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & -1 & 1 & -1 \\ -2 & -1 & -1 & -1 \\ -5 & 0 & -3 & 2 \\ 8 & 0 & 5 & -3\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -1 & -6 & -4 \\ -2 & ? & 4 & 3 \\ -1 & 1 & ? & 6 \\ 1 & -1 & -1 & ?\end{array}\right) \quad$ 2) $\left.\left(\begin{array}{cccc}? & -2 & 1 & 0 \\ -1 & ? & 1 & -1 \\ 1 & -1 & ? & 1 \\ 1 & 0 & -1 & ?\end{array}\right) \quad 3\right)\left(\begin{array}{cccc}? & -1 & -2 & 0 \\ 0 & ? & 4 & 1 \\ -2 & 2 & ? & 0 \\ 0 & 0 & 3 & ?\end{array}\right)$ 4)
$\left(\begin{array}{cccc}? & -1 & -1 & 1 \\ 0 & ? & 0 & 0 \\ 0 & 0 & ? & 0 \\ 1 & -2 & -1 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & -1 & 0 & 1 \\ 0 & ? & 0 & -1 \\ 0 & 1 & ? & -1 \\ 3 & -1 & 1 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & 0 & -12 & -5 \\ -2 & ? & -5 & -4 \\ 3 & 0 & ? & 3 \\ -1 & -1 & -3 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & 0 & 0 \\ -3 & ? & 2 & -1 \\ 2 & 1 & ? & 0 \\ 9 & 2 & -5 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}0 & 1 & 0 & -2\end{array}\right),\left(\begin{array}{llll}-2 & 0 & 1 & -1\end{array}\right),\left(\begin{array}{llll}-1 & 0 & -1 & 0\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3

Exercise 3

Check whether the vector (n-tuple) (-2 -2 -2) is a linear combination of the vectors $\left(\begin{array}{lll}-2 & -2 & -2\end{array}\right),\left(\begin{array}{lll}-4 & -4 & -4\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)^{-1} \cdot X+\left(\begin{array}{ll}-1 & 1 \\ -4 & 3\end{array}\right)=\left(\begin{array}{cc}0 & 2 \\ -3 & 3\end{array}\right)$

1) $\left(\begin{array}{cc}-2 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}0 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$ 5) $\left(\begin{array}{cc}* & -1 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 1 & 1 & 1 & -3 \\ -2 & 0 & -1 & 1 \\ a & 0 & 1 & 1\end{array}\right)$ has determinant -2 ?

1) -2
2) 5
3) -5
4) $2 \quad$ 5) -4

Exercise 6

Find the solution of the linear system
$-x_{1}+x_{2}+x_{3}+5 x_{4}+x_{5}=0$
$-4 x_{1}+3 x_{2}-5 x_{3}+2 x_{4}-5 x_{5}=3$
$5 x_{1}-4 x_{2}+4 x_{3}-7 x_{4}+4 x_{5}=-3$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ -6 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 5 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ -3 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-8 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-13 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -9 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -1\end{array}\right)+\left\langle\left(\begin{array}{c}-7 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -21 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-5 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ 3 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -12 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -16 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-5 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ 5\end{array}\right)+\left\langle\left(\begin{array}{c}-4 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 3 \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

| | Feed of company 1 | Feed of company 2 | Feed of company 3 | Feed of compa |
| :--- | :--- | :--- | :--- | :--- | :--- |
| animal flours | 2 K | 2 K | 5 K | 6 K |
| vegetable flours | 5 K | 6 K | 14 K | 17 K |
| fish flours | 5 K | 5 K | 11 K | 13 K |

The experts of the livestock farm determined
that every week each animal needs the following composition:
animal flours vegetable flours fish flours
32K
88K
72K
How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 1 to be equal to 4.

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=4$
3) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
5) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 10901600079

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}0 & -1 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -2 & -2 & -1 \\ 0 & 2 & 3 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -11 & -5 & -1 \\ -1 & ? & 1 & 0 \\ 1 & -2 & ? & 0 \\ 1 & -5 & -2 & ?\end{array}\right) \quad$ 2) $\left(\begin{array}{cccc}? & 1 & 0 & 0 \\ -1 & ? & -1 & -1 \\ 0 & 0 & ? & 1 \\ 2 & 0 & -1 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & -3 & 7 & -2 \\ 3 & ? & 0 & 0 \\ 0 & 0 & ? & 0 \\ 2 & 3 & -3 & ?\end{array}\right) \quad$ 4)
$\left(\begin{array}{cccc}? & -2 & -4 & 3 \\ -2 & ? & 0 & -1 \\ 1 & -1 & ? & 1 \\ -1 & 0 & 1 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & -2 & -1 & 1 \\ 0 & ? & 0 & -1 \\ -1 & 0 & ? & 0 \\ -1 & 0 & 2 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -2 & 3 & 0 \\ 0 & ? & -2 & 0 \\ 0 & 0 & ? & 0 \\ 1 & 2 & -3 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -2 & 3 & 4 \\ 9 & ? & 4 & 5 \\ -5 & 2 & ? & -3 \\ 7 & -1 & 3 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}1 & 1 & 0 & 0 & -2\end{array}\right),\left(\begin{array}{lllll}-1 & 1 & -2 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}-1 & 1 & 1 & 2 & 0\end{array}\right),\left(\begin{array}{lllll}2 & -1 & 1 & -2 & 1\end{array}\right),\left(\begin{array}{lllll}2 & -2 & 0 & -1 & -1\end{array}\right)$, are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n -tuple) ($0 \quad 0-4-5$) is a linear combination of the vectors $\left(\begin{array}{llll}-1 & -3 & 1 & 3\end{array}\right),\left(\begin{array}{llll}0 & 1 & -1 & -1\end{array}\right),\left(\begin{array}{llll}-1 & -1 & -1 & 1\end{array}\right),\left(\begin{array}{llll}-2 & -4 & 0 & 4\end{array}\right),\left(\begin{array}{llll}0 & 2 & -2 & -2\end{array}\right),\left(\begin{array}{llll}-1 & -2 & 0 & 2\end{array}\right)$, 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(X+\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 3 & 1 \\ -2 & 2 & 1\end{array}\right)\right) \cdot\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1\end{array}\right)=\left(\begin{array}{ccc}0 & -3 & -2 \\ -3 & 6 & 4 \\ -2 & 7 & 4\end{array}\right)$

1) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{ccc}* & -2 & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}* & 0 & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & 2 & * \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{ccc}* & * & -1 \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ a & 1 & -2 & 1\end{array}\right)$ has determinant 4?

1) 0
2) 3
3) 2
4) 5
5) 4

Exercise 6

Find the solution of the linear system
$3 x_{1}-8 x_{2}+4 x_{3}-5 x_{4}=-1$
$-2 x_{1}+6 x_{2}-3 x_{3}-5 x_{4}=-2$
$-x_{1}+5 x_{2}-2 x_{3}=3$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ ? \\ 1\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -14 \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ -8 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}5 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -6 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -7 \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ ? \\ 1\end{array}\right)$
4) $\left(\begin{array}{l}? \\ ? \\ ? \\ 0\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -15 \\ ? \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}-9 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -52 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

| | animal flours | vegetable flours | fish flours |
| :--- | :--- | :--- | :--- | :--- |
| Feed of company 1 | 3 K | 16 K | 6 K |
| Feed of company 2 | 2 K | 11 K | 4 K |
| Feed of company 3 | 2 K | 10 K | 4 K |
| Feed of company 4 | 2 K | 13 K | 5 K |

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours	fish flours 26 K	142 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 11.

1) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?
2) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=1$, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=4$, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 11116551121

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & -1 & -1 & -1 \\ 2 & 5 & 4 & 1 \\ 2 & 6 & 5 & 2 \\ 0 & 0 & 0 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -2 & 0 & -3 \\ 0 & ? & 0 & 2 \\ 1 & -2 & ? & -2 \\ 0 & -1 & -1 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -1 & 0 & -9 \\ -10 & ? & -1 & 14 \\ 0 & 0 & ? & 1 \\ 1 & 0 & 0 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & -1 & 1 & 1 \\ 3 & ? & -4 & -5 \\ -2 & -2 & ? & 4 \\ 1 & 1 & -1 & ?\end{array}\right)$
4)

$\left(\begin{array}{cccc}? & -1 & 1 & 0 \\ -2 & ? & -6 & 3 \\ 2 & -8 & ? & -4 \\ 0 & 0 & 0 & ?\end{array}\right)$
5) $\left(\begin{array}{cccc}? & 0 & -2 & 2 \\ 1 & ? & -3 & 2 \\ 2 & 1 & ? & 4 \\ 0 & 1 & -1 & ?\end{array}\right)$
6) $\left(\begin{array}{cccc}? & 0 & -1 & 0 \\ 2 & ? & 1 & 2 \\ -1 & -1 & ? & -3 \\ 1 & 0 & 1 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & 0 & -1 \\ 1 & ? & 0 & -1 \\ 0 & 1 & ? & -2 \\ 0 & 1 & 1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-1 & -4 & -4 & -1 & -2\end{array}\right),\left(\begin{array}{lllll}0 & 0 & 2 & 2 & -2\end{array}\right),\left(\begin{array}{lllll}-1 & -2 & -2 & 0 & -2\end{array}\right),\left(\begin{array}{lllll}0 & 2 & 2 & 1 & 0\end{array}\right),\left(\begin{array}{llllll}0 & -1 & -1 & 0 & -2\end{array}\right)$, are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n -tuple) (8 -4 $2-7$ is a linear combination of the vectors $\left(\begin{array}{llll}0 & -2 & 4 & 1\end{array}\right),\left(\begin{array}{llll}2 & 0 & -2 & -2\end{array}\right),\left(\begin{array}{llll}2 & -2 & 2 & -1\end{array}\right),\left(\begin{array}{llll}0 & 0 & 2 & -1\end{array}\right),\left(\begin{array}{lll}-2 & 0 & 4\end{array} 1\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & -1 \\ -1 & 1 & 0\end{array}\right) \cdot X-\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & 1 & 3\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 1 \\ -2 & 0 & -2 \\ -3 & 0 & -3\end{array}\right)$

1) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}2 & * & * \\ * & \star & \star \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{ccc}* & -2 & * \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 5 \\
0 & 0 & 1 & 4 \\
1 & a & 0 & 1 \\
1 & 1 & 0 & 2
\end{array}\right) \text { has determinant }-6 ?
$$

1) 1
2) -5
3) -4
4) 2
5) 5

Exercise 6

Find the solution of the linear system
$4 x_{1}-7 x_{2}-2 x_{3}+3 x_{4}+2 x_{5}+4 x_{6}==1$
$6 x_{1}-11 x_{2}-3 x_{3}+2 x_{4}-4 x_{5}-5 x_{6}=-5$
$5 x_{1}-10 x_{2}-3 x_{3}-5 x_{4}+5 x_{6}=-2$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ ? \\ 5 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -5 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 7 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ -1 \\ ? \\ ? \\ ?\end{array}\right)$
$3)\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ ? \\ 3\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -6 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-12 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-14 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}5 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -6 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 28 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 54 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{c}? \\ ? \\ -34 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -5 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-10 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 55 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours

Feed of company 1	5 K	11 K	10 K
Feed of company 2	7 K	15 K	13 K
Feed of company 3	19 K	42 K	38 K

Feed of company $4 \quad 7 \mathrm{~K} \quad 17 \mathrm{~K}$ 17K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
85 K	195 K	184 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9 .

1) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
3) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
4) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=?$, Feed $4=1$

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 20531650581

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ -2 & 1 & -1 & -1 \\ -4 & 0 & -1 & -1 \\ 2 & 0 & 0 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -1 & -3 & -1 \\ 1 & ? & 0 & 0 \\ 2 & 0 & ? & 1 \\ 2 & 0 & 2 & ?\end{array}\right)$ 2) $\left(\begin{array}{cccc}? & -1 & -1 & 1 \\ 0 & ? & 1 & -1 \\ -1 & 0 & ? & -1 \\ 4 & -1 & -3 & ?\end{array}\right) \quad$ 3) $\left(\begin{array}{cccc}? & -1 & 0 & 0 \\ 2 & ? & -1 & 1 \\ 3 & 0 & ? & -2 \\ -1 & 0 & -2 & ?\end{array}\right)$ 4) $\left(\begin{array}{cccc}? & 0 & -1 & -1 \\ 2 & ? & 1 & 2 \\ 2 & 0 & ? & 1 \\ 2 & 0 & 2 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & -1 & 1 & -1 \\ 6 & ? & -1 & 1 \\ 6 & 1 & ? & 2 \\ 2 & 0 & -1 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 5 & 4 \\ 0 & ? & 3 & 3 \\ 0 & -1 & ? & 1 \\ 0 & -2 & 4 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & 0 & -1 \\ -1 & ? & 0 & 0 \\ -4 & -1 & ? & -1 \\ 2 & 3 & 1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)

are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n -tuple) ($-9-40<2)$ is a linear combination of the vectors $\left(\begin{array}{llll}2 & 0 & 0 & -2\end{array}\right),\left(\begin{array}{llll}2 & 1 & 0 & 1\end{array}\right),\left(\begin{array}{llll}-1 & 1 & -1 & -2\end{array}\right),\left(\begin{array}{llll}0 & -2 & 1 & 2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:

$$
\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 1 & -1 \\
-1 & 0 & 0
\end{array}\right) \cdot\left(X+\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & -1 \\
-1 & 0 & 1
\end{array}\right)
$$

1) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{llc}* & * & -1 \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & * & 0 \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & * & 2 \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-2 & 1 & a & -2 \\ -1 & -2 & -1 & 3 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & 2 & 0\end{array}\right)$ has determinant -12 ?

1) 5
2) 2
3) -4
4) -5
5) 1

Exercise 6

Find the solution of the linear system
$-4 x_{1}+3 x_{2}-x_{3}-x_{4}-2 x_{5}==0$
$2 x_{1}-5 x_{2}+8 x_{3}+x_{4}+4 x_{5}=5$
$-2 x_{1}-3 x_{2}+9 x_{3}-x_{4}+x_{5}=6$
$-x_{2}+2 x_{3}-x_{4}-x_{5}=1$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ -7 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}10 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}-3 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ 12 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -8 \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 4\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -9 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -3 \\ ?\end{array}\right),\left(\begin{array}{c}-7 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -8 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ 0 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ 56 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -7 \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -8\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -34\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -35 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

| | Feed of company 1 | Feed of company 2 | Feed of company 3 | Feed of compa |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| animal flours | 2 K | 4 K | 1 K | 3 K |
| vegetable flours | 0 K | | 1 K | 2 K |
| fish flours | 8 K | 9 K | 2 K | 8 K |

fish flours $8 \mathrm{~K} \quad 9 \mathrm{~K} \quad$ 2K 8K

The experts of the livestock farm determined
that every week each animal needs the following composition:
animal flours vegetable flours fish flours
27K
14K 78K

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 11.

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
2) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=3$

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 20705551589

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}-2 & -3 & 0 & -3 \\ 0 & -1 & 0 & -2 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -1 & -2 & 0 \\ -1 & ? & 1 & 0 \\ -2 & 0 & ? & 1 \\ -1 & 1 & 0 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -1 & -1 & 0 \\ -1 & ? & 1 & 0 \\ -1 & 1 & ? & 0 \\ 0 & -2 & 1 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & -1 & 0 & -1 \\ -1 & ? & 0 & -1 \\ -2 & 1 & ? & 0 \\ 0 & 3 & 1 & ?\end{array}\right)$
4)

$\left.\left(\begin{array}{cccc}? & 0 & 0 & 3 \\ -2 & ? & 0 & -4 \\ -1 & 0 & ? & -3 \\ 1 & -1 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & 2 & 0 \\ 1 & ? & 0 & 1 \\ 0 & -2 & ? & -1 \\ -1 & 0 & -1 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & 0 & -1 & -1 \\ 1 & ? & -2 & -1 \\ -1 & 1 & ? & 1 \\ 1 & 0 & -2 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & -1 & 1 \\ 0 & ? & 1 & 0 \\ 0 & 2 & ? & 1 \\ 0 & 3 & -2 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}2 & 1 & -2 & 1 & -2\end{array}\right),\left(\begin{array}{lllll}2 & -1 & 2 & -1 & 0\end{array}\right),\left(\begin{array}{lllll}-1 & 2 & -1 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}0 & 2 & 1 & 2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

 $\left(\begin{array}{llll}-1 & 1 & 0 & -2\end{array}\right),\left(\begin{array}{llll}-2 & -1 & -2 & 1\end{array}\right),\left(\begin{array}{llll}1 & -2 & 2 & -2\end{array}\right)$
, ($0-1-2-2$, $\left(\begin{array}{llll}-3 & 0 & -2 & -1\end{array}\right),\left(\begin{array}{llll}-3 & 1 & -4 & 3\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}1 & -3 & -1 \\ -1 & 0 & -1 \\ 1 & 2 & 2\end{array}\right) \cdot X-\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right)=\left(\begin{array}{ccc}-2 & -3 & 2 \\ -1 & -3 & -2 \\ 1 & 4 & -1\end{array}\right)$

1) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{ccc}* & * & -2 \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}* & * & -1 \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & * & 0 \\ \star & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & * & * \\ 1 & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & 2 & 0 & 1 \\ -1 & -1 & 0 & 0 \\ a & 1 & -1 & 1 \\ -1 & 1 & -1 & 0\end{array}\right)$ has determinant 9 ?

1) -5
2) 5
3) -1
4) -3
5) 1

Exercise 6

Find the solution of the linear system
$-x_{1}+6 x_{2}+5 x_{3}-3 x_{4}=-4$
$2 x_{2}+2 x_{3}-x_{4}=-1$
$-x_{1}-3 x_{2}-3 x_{3}+2 x_{4}=4$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}1 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ 1\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ 1 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 2 \\ ? \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ -8 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 6 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -8 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 1 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}7 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}3 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}0 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ -2 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -4 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	2 K	1 K	0 K
Feed of company 2	11 K	6 K	0 K
Feed of company 3	33 K	23 K	5 K
Feed of company 4	13 K	$9 K$	$2 K$

The experts of the livestock farm determined
that every week each animal needs the following composition:

| animal flours vegetable flours fish flours | |
| :--- | :--- | :--- |
| 199 K | 129K |
| 21 K | |

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 14.

1) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?
3) Feed $1=3$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity

 number: 20714551324
Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 2 & -1 & -1 \\ 1 & 4 & -1 & -2 \\ -1 & -2 & 2 & 1 \\ 0 & -3 & 0 & 2\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -2 & 0 & -2 \\ -1 & ? & 0 & -1 \\ 0 & -2 & ? & -3 \\ -2 & 3 & 0 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -2 & 6 & 2 \\ -2 & ? & -11 & -4 \\ 0 & 0 & ? & 1 \\ -2 & 5 & -9 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & -1 & 1 & 0 \\ -2 & ? & 0 & 1 \\ 1 & 0 & ? & 0 \\ -3 & 3 & 0 & ?\end{array}\right)$
4)

$\left.\left(\begin{array}{cccc}? & 0 & -1 & -1 \\ -4 & ? & 1 & 0 \\ -2 & -1 & ? & 2 \\ 1 & -1 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & 0 & -1 & -1 \\ 2 & ? & -1 & 0 \\ -4 & 0 & ? & 6 \\ -1 & 0 & 0 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & 0 & -1 & 0 \\ 1 & ? & 0 & 2 \\ -2 & -2 & ? & -4 \\ 2 & 1 & -1 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & 0 & 0 & 0 \\ -1 & ? & 1 & 0 \\ 0 & -1 & ? & 0 \\ 1 & 0 & -1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}1 & 1 & 2 & 1 & 0\end{array}\right),\left(\begin{array}{lllll}1 & -1 & 2 & -1 & -2\end{array}\right),\left(\begin{array}{lllll}2 & -2 & 2 & 1 & 2\end{array}\right),\left(\begin{array}{lllll}2 & -1 & -1 & 0 & 0\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n -tuple) ($\left.\begin{array}{cccc}-6 & -6 & 3 & -7\end{array}\right)$ is a linear combination of the vectors $\left(\begin{array}{llll}4 & -4 & 4 & 2\end{array}\right),\left(\begin{array}{llll}2 & -2 & 2 & 1\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}-1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 0\end{array}\right) \cdot X \cdot\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 1\end{array}\right)=\left(\begin{array}{ccc}-2 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0\end{array}\right)$

1) $\left(\begin{array}{lll}* & * & 0 \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}* & * & 1 \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{ccc}* & * & * \\ -2 & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & * & * \\ 2 & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{ccc}* & * & * \\ * & -2 & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & 0 & 3 & 3 \\ 1 & 0 & -1 & 0 \\ 2 & a & 1 & 2 \\ 1 & 0 & -2 & -2\end{array}\right)$ has determinant -1 ?

1) 4
2) -5
3) 5
4) 1
5) -2

Exercise 6

Find the solution of the linear system
$-2 x_{2}-7 x_{3}-5 x_{4}+10 x_{5}=-3$
$2 x_{1}-5 x_{2}+3 x_{3}+x_{4}-3 x_{5}=2$
$3 x_{1}+4 x_{2}-x_{3}-2 x_{4}+3 x_{5}==5$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}-3 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 1 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 9 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 1 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ ? \\ 41 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -5 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -87\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ 40 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -4 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -49 \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ 0\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 9\end{array}\right)\right\rangle$
4) $\left(\begin{array}{c}? \\ -2 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -7 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -53 \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours
Feed of company $1 \quad 3 \mathrm{~K} 3 \mathrm{~K}$ 2K
Feed of company 2 3K 3K 2K
Feed of company 3 13K 16K 3K
Feed of company 4 10K 12K 3K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours	fish flours	
79 K	96 K	21 K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 1 to be equal to 0 .

1) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
2) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=3$
5) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=1$

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 20730551515

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}3 & 0 & -2 & 2 \\ -3 & 1 & 3 & -3 \\ -1 & 0 & 1 & -1 \\ -2 & 1 & 2 & -1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -2 & 1 & 1 \\ 1 & ? & -2 & -1 \\ 3 & -4 & ? & 0 \\ 0 & 0 & 1 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & 0 & 2 & 0 \\ 0 & ? & -3 & 0 \\ 1 & -1 & ? & 1 \\ 0 & -1 & 1 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & -1 & 0 & -2 \\ -2 & ? & 0 & 3 \\ 0 & 0 & ? & -1 \\ 0 & 0 & 1 & ?\end{array}\right)$
4)

$\left(\begin{array}{cccc}? & -1 & 0 & -1 \\ 0 & ? & 1 & 0 \\ 0 & 1 & ? & 1 \\ 1 & 2 & 2 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & -1 & 1 & 1 \\ 3 & ? & -1 & -1 \\ -10 & 0 & ? & 7 \\ -4 & 0 & 2 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 3 & 2 \\ 2 & ? & -3 & -1 \\ 0 & 0 & ? & 0 \\ 1 & 0 & -2 & ?\end{array}\right)$ 7) $\left(\begin{array}{llll}? & 0 & 0 & -1 \\ 2 & ? & 0 & -2 \\ 0 & 2 & ? & -1 \\ 0 & 0 & 0 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}1 & 1 & -2 & -1 & 0\end{array}\right),\left(\begin{array}{lllll}-2 & -2 & -2 & 1\end{array}\right),\left(\begin{array}{lllll}-2 & -1 & -2 & -2 & -2\end{array}\right),\left(\begin{array}{lllll}2 & 1 & 2 & 0 & -2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4

Exercise 3

Check whether the vector (n-tuple) ($\left.2 \begin{array}{llll}2 & 1 & -2\end{array}\right)$ is a linear combination of the vectors
$\left(\begin{array}{llll}2 & 1 & 1 & -2\end{array}\right),\left(\begin{array}{llll}4 & 2 & 2 & -4\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right) \cdot\left(X-\left(\begin{array}{ccc}1 & 5 & -3 \\ 0 & 2 & -1 \\ 1 & 2 & -1\end{array}\right)\right)=\left(\begin{array}{ccc}-2 & -11 & 5 \\ 0 & -3 & 1 \\ 0 & 3 & -1\end{array}\right)$

1) $\left(\begin{array}{ccc}-2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{ccc}* & -2 & * \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & -1 & 2 & 1 \\ 1 & a & -2 & -2\end{array}\right)$ has determinant 3 ?

1) -5
2) 2
3) 1
4) -2
5) - 1

Exercise 6

Find the solution of the linear system
$6 x_{1}+x_{2}+9 x_{3}+4 x_{4}-x_{5}=3$
$-4 x_{1}-x_{2}-6 x_{3}-6 x_{4}+x_{5}=-9$
$-5 x_{1}-x_{2}-8 x_{3}+x_{4}+3 x_{5}=1$
$3 x_{1}+x_{2}+5 x_{3}+x_{4}-3 x_{5}=5$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ -13 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-15 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-4 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ -14 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ 12 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 4 \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ ? \\ ? \\ -1 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ 11 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-9 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}? \\ ? \\ 9 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -10\end{array}\right)\right\rangle$
$5)\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 8\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ 5 \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

| | Feed of company 1 | Feed of company 2 | Feed of company 3 | Feed of compa |
| :--- | :--- | :--- | :--- | :--- | :--- |
| animal flours | 2 K | 3 K | 1 K | 1 K |
| vegetable flours | 1 K | 2 K | 1 K | 1 K |
| fish flours | 5 K | 8 K | 4 K | 7 K |

fish flours $5 K \quad 8 K \quad 4 K \quad 7 K$
The experts of the livestock farm determined
that every week each animal needs the following composition:
animal flours vegetable flours fish flours
16K
10K
48K
How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the
feed, the total number of sacks for every animal has to be equal to 9 .

1) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
2) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=1$, Feed $3=$?, Feed $4=$?
5) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 20902651249

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{llll}2 & -4 & 1 & 0 \\ 3 & -5 & 1 & 1 \\ 3 & -6 & 2 & 0 \\ 3 & -6 & 1 & 1\end{array}\right)$.

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}1 & -1 & 1 & 0\end{array}\right),\left(\begin{array}{llll}0 & 2 & 1 & 2\end{array}\right),\left(\begin{array}{llll}1 & -1 & 2 & 0\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3

Exercise 3

Check whether the vector (n -tuple) ($-2-7 \quad 0$) is a linear combination of the vectors
$\left(\begin{array}{lll}4 & 2 & -4\end{array}\right),\left(\begin{array}{lll}0 & 0 & -4\end{array}\right),\left(\begin{array}{lll}2 & 1 & -2\end{array}\right),\left(\begin{array}{lll}0 & 0 & 4\end{array}\right),\left(\begin{array}{lll}2 & 1 & 2\end{array}\right)$,

1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation: $\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right) \cdot X \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}-1 & 1 \\ 2 & -2\end{array}\right)$

1) $\left(\begin{array}{cc}-2 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{ll}0 & * \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}2 & * \\ * & *\end{array}\right)$
5) $\left(\begin{array}{cc}* & -1 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-1 & -1 & 0 & 2 \\ 1 & 0 & 0 & 1 \\ 2 & 0 & 1 & 1 \\ a & -1 & 1 & 0\end{array}\right)$ has determinant -2 ?

1) 0
2) 2
3) -3
4) $4 \quad 5) 1$

Exercise 6

Find the solution of the linear system
$x_{1}-x_{2}-2 x_{4}=-3$
$-x_{1}+2 x_{2}-x_{3}+2 x_{4}+2 x_{5}=-5$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ 0 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}1 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 0 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-2 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ ? \\ 9 \\ ? \\ ?\end{array}\right)$
$3)\left(\begin{array}{c}-8 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 0 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-1 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -4 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ -7 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}4 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 1 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}0 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -9\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -8\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours
Feed of company 1 19K 13K 20K
Feed of company 2 11K 7K 6K
Feed of company 3 20K 13K 14K

Feed of company 4 2K 2K 3K
The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
132K	89 K	127 K

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12 .

1) Feed $1=4$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
3) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=2$
5) Feed $1=$?, Feed $2=2$, Feed $3=?$, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 21104501336

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}-1 & 3 & -2 & 2 \\ 1 & -1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 2 & -1 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -9 & -1 & 4 \\ -1 & ? & 0 & 0 \\ 0 & -4 & ? & 2 \\ 0 & -1 & 0 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -3 & -1 & 1 \\ -1 & ? & 0 & 0 \\ 1 & 4 & ? & -1 \\ 0 & -1 & 0 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & 0 & -1 & -2 \\ 0 & ? & -1 & 0 \\ -1 & 1 & ? & 2 \\ 0 & 1 & 1 & ?\end{array}\right)$ 4)
$\left.\left.\left(\begin{array}{cccc}? & -2 & -1 & -1 \\ 0 & ? & 1 & 0 \\ 0 & -2 & ? & 0 \\ -1 & 1 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -2 & 0 & -1 \\ 0 & ? & -1 & 1 \\ 1 & 4 & ? & 3 \\ -1 & 1 & 1 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & -2 & 1 \\ 2 & ? & 3 & 0 \\ 1 & 0 & ? & 0 \\ -3 & -4 & -4 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & -1 & 2 \\ -1 & ? & 1 & -1 \\ 0 & 1 & ? & 0 \\ 0 & 0 & -1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-4 & 2 & -2 & 2 & 0\end{array}\right),\left(\begin{array}{lllll}-2 & -1 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{lllll}2 & 2 & 0 & 1 & 1\end{array}\right)$
, ($\left.1 \begin{array}{lllll}1 & -2 & 0 & 1 & -1\end{array}\right),\left(\begin{array}{lllll}-2 & 1 & -1 & 1 & 0\end{array}\right),\left(\begin{array}{lllll}-4 & 0 & -1 & 1 & -1\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5
6) 6

Exercise 3

Check whether the vector (n-tuple) ($3-9003)$ is a linear combination of the vectors $\left(\begin{array}{llll}-1 & 0 & 2 & 1\end{array}\right),\left(\begin{array}{llll}0 & -2 & 0 & 2\end{array}\right),\left(\begin{array}{llll}-2 & 1 & 2 & 2\end{array}\right),\left(\begin{array}{llll}-3 & 1 & 4 & 3\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(X+\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & 0 \\ 2 & 2 & -1\end{array}\right)\right) \cdot\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 0\end{array}\right)=\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -2 \\ 1 & 1 & -1\end{array}\right)$

1) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}2 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{ccc}* & * & -1 \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}0 & 0 & -2 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & a & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$ has determinant -5 ?

1) 1
2) 5
3) 4
4) -3
5) -4

Exercise 6

Find the solution of the linear system
$2 x_{2}-3 x_{3}+2 x_{4}=-4$
$-x_{2}+x_{3}-x_{4}=-3$
$-2 x_{1}-2 x_{2}+4 x_{3}-3 x_{4}=-10$
$-2 x_{1}-3 x_{2}+6 x_{3}-4 x_{4}=-3$
taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say,
apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ ? \\ 4\end{array}\right)+\left\langle\left(\begin{array}{c}-1 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}7 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 0\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 6 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ ? \\ 9 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -5\end{array}\right)\right\rangle$
3) $\left(\begin{array}{c}? \\ -6 \\ ? \\ ?\end{array}\right)$
4) $\left(\begin{array}{c}? \\ ? \\ ? \\ 23\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 3 \\ ?\end{array}\right)\right\rangle$
5) $\left(\begin{array}{l}0 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ -2\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	$5 K$	$2 K$	$3 K$
Feed of company 2	$7 K$	$3 K$	$4 K$
Feed of company 3	$3 K$	$1 K$	$3 K$
Feed of company 4	$3 K$	$1 K$	$1 K$

The experts of the livestock farm determined
that every week each animal needs the following composition:
animal flours vegetable flours fish flours

28K 11K 19K
How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 2 to be equal to 1 .

1) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
2) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=1$, Feed $3=$?, Feed $4=$?
4) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 21130550766

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}-2 & 4 & 1 & 1 \\ -2 & 4 & 1 & 0 \\ -1 & 2 & 1 & 0 \\ 1 & -3 & -1 & 0\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -7 & -2 & 4 \\ 1 & ? & -1 & 1 \\ 3 & -6 & ? & 4 \\ 0 & -2 & 0 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -4 & 0 & -3 \\ 1 & ? & 0 & 1 \\ 3 & -1 & ? & -1 \\ 0 & -2 & 1 & ?\end{array}\right)$
3) $\left(\begin{array}{cccc}? & -3 & -4 & 2 \\ 0 & ? & 4 & -1 \\ 2 & -1 & ? & -2 \\ -1 & 1 & -1 & ?\end{array}\right)$
4)

$\left.\left(\begin{array}{cccc}? & -1 & -1 & -2 \\ 0 & ? & -1 & -1 \\ 0 & -1 & ? & 0 \\ 1 & -1 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & 0 & 0 \\ -1 & ? & 1 & 0 \\ -1 & -1 & ? & -1 \\ 0 & 1 & 1 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 1 & -1 \\ 2 & ? & 0 & -2 \\ 2 & 0 & ? & -2 \\ 2 & 1 & 0 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & -1 & 1 & 1 \\ 3 & ? & 0 & -1 \\ -1 & -1 & ? & 1 \\ -3 & -3 & 1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)

$$
\begin{aligned}
& \left(\begin{array}{rrrrr}
-2 & -2 & -1 & -1 & 1
\end{array}\right),\left(\begin{array}{lllll}
1 & -1 & 1 & 2 & 0
\end{array}\right),\left(\begin{array}{lllll}
-2 & 0 & 1 & 2 & 1
\end{array}\right) \\
& ,\left(\begin{array}{lllll}
1 & 2 & 0 & 1 & -1
\end{array}\right),\left(\begin{array}{llll}
-4 & -2 & -1 & -1
\end{array}\right),\left(\begin{array}{cccc}
-2 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

are independent?

1) 1
2) 2
3) 3
4) 4
5) 5
6) 6

Exercise 3

Check whether the vector (n -tuple) ($-9-10-5$) is a linear combination of the vectors $\left(\begin{array}{llll}0 & -1 & 2 & 0\end{array}\right),\left(\begin{array}{llll}-1 & 2 & 2 & 0\end{array}\right),\left(\begin{array}{llll}-2 & 2 & 1 & -2\end{array}\right),\left(\begin{array}{llll}-4 & 4 & 2 & -4\end{array}\right),\left(\begin{array}{llll}-2 & -2 & 0 & 0\end{array}\right),\left(\begin{array}{llll}-4 & 0 & 1 & -2\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:

$$
\left(\begin{array}{ccc}
-1 & -2 & 2 \\
1 & 2 & -1 \\
-2 & -3 & 2
\end{array}\right) \cdot X \cdot\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & -1 & 0
\end{array}\right)
$$

1) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}0 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{ccc}* & -1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & 0 & * \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & a & -1 & 1 \\ 1 & -1 & 0 & 1\end{array}\right)$ has determinant -1 ?

1) 3
2) -4
3) -1
4) 5
5) -3

Exercise 6

Find the solution of the linear system
$2 x_{1}-7 x_{2}+2 x_{3}+2 x_{4}-5 x_{5}+4 x_{6}=-5$
$x_{1}-2 x_{2}+3 x_{4}+3 x_{5}-3 x_{6}=-4$
$-x_{2}+x_{3}-3 x_{4}-3 x_{5}-2 x_{6}==3$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ ? \\ 0 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ 5 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -5 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ 14 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ ? \\ 9 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -10 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ ? \\ ? \\ 1 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 0 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}? \\ ? \\ ? \\ 3 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}-1 \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -7 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 19 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$5)\left(\begin{array}{c}? \\ ? \\ ? \\ -3 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 0 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ -8 \\ ? \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ 11 \\ ? \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
animal flours vegetable flours fish flours
Feed of company 1 14K 9K 15K
Feed of company 2 13K 9K 15K
Feed of company $311 \mathrm{~K} \quad 8 \mathrm{~K}$ 13K
Feed of company $4 \quad 4 \mathrm{~K}$ 3K 5K

The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
115 K	78 K	129 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9.

1) Feed $1=$?, Feed $2=$?, Feed $3=2$, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=3$, Feed $4=$?
3) Feed $1=3$, Feed $2=$?, Feed $3=$?, Feed $4=$?
4) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=1$, Feed $3=$?, Feed $4=$?

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 30216550613

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}2 & 1 & -1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -2 & -5 & 0 \\ 0 & ? & 2 & 0 \\ 0 & -1 & ? & 0 \\ 0 & 0 & 0 & ?\end{array}\right)$
2) $\left(\begin{array}{cccc}? & -1 & 1 & 0 \\ -1 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ 0 & 0 & -1 & ?\end{array}\right)$
3) $\left.\left(\begin{array}{cccc}? & -1 & 0 & -2 \\ -2 & ? & 0 & 1 \\ 1 & 2 & ? & 0 \\ 1 & -1 & 0 & ?\end{array}\right) \quad 4\right)$
$\left.\left.\left(\begin{array}{cccc}? & -1 & 0 & -1 \\ 0 & ? & 1 & 1 \\ 0 & -2 & ? & 0 \\ -1 & 0 & 0 & ?\end{array}\right) \quad 5\right)\left(\begin{array}{cccc}? & -1 & 0 & 0 \\ -1 & ? & -4 & 7 \\ 1 & -2 & ? & 2 \\ 1 & -1 & 1 & ?\end{array}\right) \quad 6\right)\left(\begin{array}{cccc}? & -1 & 2 & 1 \\ 1 & ? & 2 & 1 \\ 1 & 0 & ? & 1 \\ 1 & -2 & 3 & ?\end{array}\right) \quad$ 7) $\left(\begin{array}{cccc}? & 0 & -1 & -1 \\ 1 & ? & 0 & 0 \\ -1 & -1 & ? & -1 \\ -1 & -2 & 1 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{lllll}-3 & 1 & -1 & 1 & -1\end{array}\right),\left(\begin{array}{lllll}-2 & 2 & 1 & 1 & -2\end{array}\right),\left(\begin{array}{lllll}1 & -1 & 1 & 0 & 2\end{array}\right)$
, ($\left.1 \begin{array}{lllll}1 & 2 & 0 & -1\end{array}\right),\left(\begin{array}{lllll}0 & -2 & -1 & -2 & -1\end{array}\right),\left(\begin{array}{lllll}2 & 0 & 2 & 2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5
6) 6

Exercise 3

Check whether the vector (n-tuple) ($\left.\begin{array}{cccc}-9 & 3 & -7\end{array}\right)$ is a linear combination of the vectors
$\left(\begin{array}{llll}-2 & 1 & -1 & -2\end{array}\right),\left(\begin{array}{llll}-4 & 3 & -1 & -1\end{array}\right),\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{llll}0 & 0 & -2 & -1\end{array}\right),\left(\begin{array}{llll}-3 & 1 & -1 & -2\end{array}\right),\left(\begin{array}{llll}2 & -2 & 0 & -1\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 3 & 1\end{array}\right) \cdot\left(X+\left(\begin{array}{ccc}1 & 2 & 0 \\ 1 & -1 & -1 \\ -1 & 2 & 1\end{array}\right)\right)=\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 0 \\ 3 & 4 & 1\end{array}\right)$

1) $\left(\begin{array}{ccc}-1 & * & * \\ * & * & * \\ * & * & *\end{array}\right)$
2) $\left(\begin{array}{lll}* & 0 & * \\ * & * & * \\ * & * & *\end{array}\right)$
3) $\left(\begin{array}{lll}* & 1 & * \\ * & * & * \\ * & * & *\end{array}\right)$
4) $\left(\begin{array}{lll}* & 2 & * \\ * & * & * \\ * & * & *\end{array}\right)$
5) $\left(\begin{array}{lll}* & * & 2 \\ * & * & * \\ * & * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-2 & a & 2 & 1 \\ 0 & -1 & 1 & 2 \\ 0 & 0 & -1 & -1 \\ 1 & -1 & -1 & -2\end{array}\right)$ has determinant 3 ?

1) -3
2) 4
3) 3
4) 2
5) -2

Exercise 6

Find the solution of the linear system
$-x_{1}-x_{2}+3 x_{3}==1$
$-x_{1}+x_{3}=0$
$-x_{1}-x_{2}+2 x_{3}=-1$
$2 x_{1}-x_{2}+2 x_{3}=5$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}5 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}6 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}6 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 9 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{l}? \\ ? \\ 5\end{array}\right)+\left\langle\left(\begin{array}{l}5 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -2\end{array}\right),\left(\begin{array}{l}? \\ 3 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}? \\ 1 \\ ?\end{array}\right)$
4) $\left(\begin{array}{l}0 \\ ? \\ ?\end{array}\right)$
5) $\left(\begin{array}{l}? \\ ? \\ 2\end{array}\right)$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	5 K	8 K	4 K
Feed of company 2	1 K	0 K	1 K
Feed of company 3	1 K	2 K	1 K
Feed of company 4	11 K	17 K	9 K

The experts of the livestock farm determined
that every week each animal needs the following composition:
animal flours vegetable flours fish flours
12K 20K 10K

How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 4.

1) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=1$, Feed $4=$?
4) Feed $1=1$, Feed $2=$?, Feed $3=$?, Feed $4=$?
5) Feed $1=2$, Feed $2=$?, Feed $3=$?, Feed $4=$?

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 30312650522

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1\end{array}\right)$.

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}0 & -1 & 0 & 1\end{array}\right),\left(\begin{array}{llll}2 & 1 & 2 & 1\end{array}\right),\left(\begin{array}{llll}0 & 1 & 2 & 0\end{array}\right),\left(\begin{array}{llll}2 & 2 & 1 & -2\end{array}\right),\left(\begin{array}{llll}2 & 2 & 2\end{array}\right)$,
are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n-tuple) (-4-2-2) is a linear combination of the vectors
$\left(\begin{array}{lll}4 & 2 & 2\end{array}\right),\left(\begin{array}{lll}2 & 1 & 1\end{array}\right)$,

1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:
$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \cdot X+\left(\begin{array}{cc}1 & 1 \\ -5 & -4\end{array}\right)=\left(\begin{array}{cc}2 & 1 \\ -5 & -3\end{array}\right)$

1) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}2 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{cc}* & -1 \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}* & 0 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{ll}* & 1 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix
$\left(\begin{array}{cccc}-2 & -1 & 1 & 1 \\ 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -2 \\ 1 & -1 & 1 & a\end{array}\right)$ has determinant 3 ?

1) 1
2) 5
3) -2
4) 4 5) 3

Exercise 6

Find the solution of the linear system
$x_{1}+x_{2}+4 x_{3}-x_{4}=-1$
$-5 x_{1}-4 x_{2}+3 x_{3}-2 x_{4}=5$
taking as parameters, if it is necessary, the
last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{l}? \\ ? \\ ? \\ 0\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -23 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-6 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}? \\ ? \\ ? \\ 10\end{array}\right)+\left\langle\left(\begin{array}{l}9 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ -6 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ 6 \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}0 \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}16 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-5 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
4) $\left(\begin{array}{l}? \\ 9 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ 3 \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}-4 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -2\end{array}\right)\right\rangle$
5) $\left(\begin{array}{c}? \\ ? \\ -2 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -22 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 8 \\ ? \\ ?\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:
Feed of company 1 Feed of company 2 Feed of company 3

Feed of comp:
animal flours
2K
vegetable flours 1 K
fish flours 6K
0K
6K
5K

4K
21K
The experts of the livestock farm determined
that every week each animal needs the following composition:

animal flours vegetable flours	fish flours	
36 K	33 K	143 K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 13.

1) Feed $1=3$, Feed $2=$?, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=$?, Feed $3=0$, Feed $4=$?
3) Feed $1=$?, Feed $2=0$, Feed $3=$?, Feed $4=$?
4) Feed $1=$?, Feed $2=4$, Feed $3=$?, Feed $4=$?
5) Feed $1=$?, Feed $2=$?, Feed $3=4$, Feed $4=$?

Mathematics 1 - ADE/FyCo-2020/2021

List of exercises 04-Matrices/Linear Systems for identity number: 30509500045

Exercise 1

Compute the inverse of the matrix $\left(\begin{array}{cccc}0 & 1 & -2 & -2 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & -1 \\ -1 & 1 & 0 & 1\end{array}\right)$.

1) $\left(\begin{array}{cccc}? & -6 & -3 & 3 \\ -1 & ? & 1 & -1 \\ 0 & 1 & ? & -1 \\ 0 & -1 & -1 & ?\end{array}\right) \quad$ 2) $\left(\begin{array}{cccc}? & -5 & 4 & 3 \\ 1 & ? & 2 & 2 \\ -1 & 2 & ? & -1 \\ 1 & -3 & 2 & ?\end{array}\right)$ 3) $\left(\begin{array}{cccc}? & -2 & 0 & -1 \\ 1 & ? & 0 & 2 \\ -1 & -2 & ? & 0 \\ 0 & 1 & 1 & ?\end{array}\right)$ 4)
$\left(\begin{array}{cccc}? & -1 & -1 & 0 \\ 0 & ? & -1 & 0 \\ 0 & 1 & ? & -1 \\ 0 & 1 & 2 & ?\end{array}\right)$ 5) $\left(\begin{array}{cccc}? & -1 & 1 & 1 \\ 0 & ? & 0 & 1 \\ 1 & 0 & ? & 0 \\ 1 & -1 & 0 & ?\end{array}\right)$ 6) $\left(\begin{array}{cccc}? & -1 & 2 & -1 \\ 3 & ? & 1 & -1 \\ 0 & 1 & ? & 0 \\ 0 & 1 & 1 & ?\end{array}\right)$ 7) $\left(\begin{array}{cccc}? & -1 & 4 & -1 \\ -1 & ? & -1 & 0 \\ 1 & -1 & ? & -1 \\ 5 & -3 & 13 & ?\end{array}\right)$

Exercise 2

How many of the vectors (n -tuples)
$\left(\begin{array}{llll}-2 & 1 & 2 & 1\end{array}\right),\left(\begin{array}{llll}-2 & -1 & -2 & 1\end{array}\right),\left(\begin{array}{llll}2 & 1 & -2 & 0\end{array}\right),\left(\begin{array}{llll}0 & 2 & 1 & 1\end{array}\right),\left(\begin{array}{llll}-4 & -2 & -4 & 2\end{array}\right)$, are independent?

1) 1
2) 2
3) 3
4) 4
5) 5

Exercise 3

Check whether the vector (n -tuple) (-7 2 $2-5$) is a linear combination of the vectors $\left(\begin{array}{lll}-1 & 1 & -2\end{array}\right),\left(\begin{array}{lll}-2 & 2 & -4\end{array}\right)$,

1) Yes
2) No

Exercise 4

Solve for the matrix X in the following equation:

$$
\left(X-\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right)\right) \cdot\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
-1 & -1 \\
3 & -6
\end{array}\right)
$$

1) $\left(\begin{array}{cc}-1 & * \\ * & *\end{array}\right)$
2) $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right)$
3) $\left(\begin{array}{cc}* & -2 \\ * & *\end{array}\right)$
4) $\left(\begin{array}{ll}* & 0 \\ * & *\end{array}\right)$
5) $\left(\begin{array}{ll}* & 2 \\ * & *\end{array}\right)$

Exercise 5

Compute the value for parameter a in such a way that the matrix

$$
\left(\begin{array}{cccc}
0 & 1 & 1 & -2 \\
1 & 1 & -2 & a \\
1 & 0 & 2 & 1 \\
1 & 1 & 2 & 2
\end{array}\right) \text { has determinant }-19 ?
$$

1) 5
2) 3
3) -5
4) 2 5) -3

Exercise 6

Find the solution of the linear system

$$
\begin{aligned}
& x_{1}+4 x_{2}+3 x_{3}+2 x_{4}+3 x_{5}=-4 \\
& 9 x_{1}+6 x_{2}-x_{3}+x_{5}=-10 \\
& 5 x_{1}+5 x_{2}+x_{3}+x_{4}+2 x_{5}==3
\end{aligned}
$$

taking as parameters, if it is necessary, the
first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)
. Express the solution by means of linear combinations.

1) $\left(\begin{array}{c}? \\ ? \\ -2 \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -8\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -4\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 0 \\ ?\end{array}\right)\right\rangle$
2) $\left(\begin{array}{c}-1 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ ? \\ 12 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 5 \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ -1 \\ ?\end{array}\right)\right\rangle$
$3)\left(\begin{array}{c}? \\ ? \\ ? \\ -5 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ -9 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -1\end{array}\right),\left(\begin{array}{c}? \\ -5 \\ ? \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ 4 \\ ? \\ ? \\ ?\end{array}\right)\right\rangle$
$4)\left(\begin{array}{c}? \\ ? \\ ? \\ -3 \\ ?\end{array}\right)+\left\langle\left(\begin{array}{c}? \\ ? \\ -10 \\ ? \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 7\end{array}\right),\left(\begin{array}{c}? \\ ? \\ ? \\ ? \\ -3\end{array}\right),\left(\begin{array}{c}? \\ ? \\ 10 \\ ? \\ ?\end{array}\right)\right\rangle$
3) $\left(\begin{array}{l}0 \\ ? \\ ? \\ ? \\ ?\end{array}\right)+\left\langle\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ -9\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ 7 \\ ?\end{array}\right),\left(\begin{array}{l}? \\ ? \\ ? \\ ? \\ 1\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used.
Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

Feed of company 1	Feed of company 2	Feed of company 3	Feed of compe
$3 K$	$6 K$	$7 K$	$4 K$
$10 K$	$17 K$	$25 K$	$14 K$
$2 K$	$4 K$	$5 K$	$3 K$

animal flours 3 K
vegetable flours 10K
fish flours 2K 4K

The experts of the livestock farm determined
that every week each animal needs the following composition:
animal flours vegetable flours fish flours

65K 213K 45K
How many sacks of every company are necessary to reach the
recommended composition taking into account that, to properly store the
feed, the total number of sacks for every animal has to be equal to 11.

1) Feed $1=$?, Feed $2=2$, Feed $3=$?, Feed $4=$?
2) Feed $1=$?, Feed $2=3$, Feed $3=$?, Feed $4=$?
3) Feed $1=$?, Feed $2=$?, Feed $3=$?, Feed $4=0$
4) Feed $1=$?, Feed $2=$?, Feed $3=3$, Feed $4=$?
5) Feed $1=0$, Feed $2=$?, Feed $3=$?, Feed $4=$?
