Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 2 & 0 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -4 & -5 & 3 \\ -2 & ? & 8 & -4 \\ 1 & -2 & ? & 2 \\ 1 & -1 & -4 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & 0 & 0 & -1 \\ 0 & ? & 0 & -1 \\ 1 & 0 & ? & -2 \\ 0 & -2 & 1 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -3 & -1 & 0 \\ 1 & ? & 2 & 1 \\ -2 & -2 & ? & -2 \\ 1 & 1 & 1 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & -3 & 1 & 1 \\ -2 & -2 & ? & -2 \\ 1 & 1 & 1 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & -3 & 1 & 0 \\ 1 & ? & 2 & 1 \\ -2 & -2 & ? & -2 \\ 1 & 1 & 1 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & -2 & 0 & -1 \\ 0 & ? & 1 & 1 \\ 0 & 0 & ? & 0 \\ -1 & 0 & 2 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & 1 & -1 \\ -3 & 1 & ? & 0 \\ 1 & 0 & 1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(0 -2 3 -4), (1 0 -2 2), (1 -2 1 -2), (0 -4 3 -1), (1 2 -2 -1), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) $(-8 \ 4 \ 6)$ is a linear combination of the vectors $(0 \ 2 \ 2)$, $(1 \ 0 \ -2)$,

1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} X + \begin{pmatrix} 3 & -1 \\ 1 & 0 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} -2 & 2 \\ 0 & 0 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

Find the solution of the linear system

 $\begin{array}{l} 3 \, x_1 - 5 \, x_2 + 3 \, x_3 - 5 \, x_4 == -2 \\ -2 \, x_1 - 2 \, x_2 + 2 \, x_3 - 3 \, x_4 == 4 \\ 7 \, x_1 - x_2 - x_3 + x_4 == -10 \end{array}$

~

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} 3\\ 2\\ 2\\ 2 \end{pmatrix} + \langle \begin{pmatrix} 2\\ 2\\ 17\\ 2 \end{pmatrix}, \begin{pmatrix} 2\\ -7\\ -7\\ 2 \end{pmatrix} \rangle$$

2) $\begin{pmatrix} 4\\ 2\\ 2\\ 2\\ 2 \end{pmatrix} + \langle \begin{pmatrix} -4\\ 2\\ 2\\ 2\\ 2 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ -3\\ -3 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ 2\\ -8 \end{pmatrix} \rangle$
3) $\begin{pmatrix} 0\\ 2\\ 2\\ 2\\ 2 \end{pmatrix} + \langle \begin{pmatrix} 2\\ 2\\ 2\\ 20\\ 2 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ -4 \end{pmatrix} \rangle$
4) $\begin{pmatrix} 5\\ 2\\ 2\\ 18\\ 18 \end{pmatrix} + \langle \begin{pmatrix} 2\\ 2\\ 2\\ 20\\ 2 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ -7\\ 2 \end{pmatrix} \rangle$
5) $\begin{pmatrix} 2\\ 2\\ 2\\ 18\\ 18 \end{pmatrix} + \langle \begin{pmatrix} 2\\ 2\\ 2\\ 20\\ 2 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ -7\\ 2 \end{pmatrix} \rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
animal flours	19K	4K	12K	10K
vegetable flours	6K	2К	4K	3K
fish flours	31K	5K	19K	17K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
136K	44K	221K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 11.

- 1) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?
- 2) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?
- 3) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1
- 4) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?
- 5) Feed 1=?, Feed 2=?, Feed 3=1, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} -1 & 1 & -3 & -2 \\ 1 & 0 & 2 & 0 \\ 2 & -2 & 5 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -6 & 3 & 2 \\ 1 & ? & 1 & 1 \\ 4 & -5 & ? & 1 \\ -2 & 3 & -1 & ? \end{pmatrix}$$

2)
$$\begin{pmatrix} ? & -3 & 0 & 2 \\ 1 & ? & 0 & -1 \\ 1 & 1 & ? & -1 \\ -2 & -3 & 1 & ? \end{pmatrix}$$

3)
$$\begin{pmatrix} ? & -2 & -2 & 3 \\ 0 & ? & 0 & 1 \\ -1 & 1 & ? & -1 \\ -3 & 2 & 2 & ? \end{pmatrix}$$

4)
$$\begin{pmatrix} ? & -1 & -2 & 4 \\ -1 & ? & -1 & 0 \\ 0 & 0 & ? & -2 \\ -1 & 0 & -1 & ? \end{pmatrix}$$

5)
$$\begin{pmatrix} ? & -1 & -1 & -2 \\ 1 & ? & 0 & 0 \\ 1 & 0 & ? & -1 \\ -2 & -2 & -4 & ? \end{pmatrix}$$

6)
$$\begin{pmatrix} ? & -1 & -1 & 0 \\ 3 & ? & 2 & 2 \\ -3 & -1 & ? & -2 \\ -5 & -1 & -3 & ? \end{pmatrix}$$

7)
$$\begin{pmatrix} ? & -1 & 0 & 1 \\ 0 & ? & 0 & -1 \\ 7 & 0 & ? & 5 \\ 3 & 0 & 1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-4 -1 -1 2 -1), (-2 -1 -2 0 -2), (0 2 -1 0 0), (2 0 -1 -2 -1), (-2 -3 -1 0 -2), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (-4 5 5 1) is a linear combination of the vectors

(-1 -2 -1 -2), (0 2 -1 0), (-2 -4 -2 -4), , (-2 -4 -1 -4), (-2 -4 0 -4), (-1 -2 0 -2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot X + \begin{pmatrix} 0 & 0 & 1 \\ -2 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 2 \\ -3 & 2 & -1 \\ 0 & -1 & -1 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & * & -2 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & * \\ -1 & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ * & 1 & * \\ * & * & * \end{pmatrix}$

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -2 & -1 & 1 & 0 \\ a & -1 & 1 & -2 \\ 2 & 0 & 1 & 1 \\ 1 & 2 & -1 & 0 \end{pmatrix} \text{ has determinant } -8? \\ 1) & -5 & 2) & -4 & 3) & 4 & 4) & -1 & 5) & -2 \\ \end{cases}$

Exercise 6

Find the solution of the linear system

 $\begin{array}{l} 8 \; x_1 + 10 \; x_2 - 4 \; x_3 - 10 \; x_4 - 2 \; x_5 + 4 \; x_6 == -2 \\ -4 \; x_1 - 4 \; x_2 + x_3 + 5 \; x_4 + x_5 + 2 \; x_6 == 5 \\ -x_1 - 2 \; x_2 + x_3 + 5 \; x_4 - 4 \; x_6 == -1 \\ x_1 + x_2 - 5 \; x_4 == -3 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of

kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	2К	7K	5K
Feed of company 2	1K	ØК	1K
Feed of company 3	өк	2К	1K
Feed of company 4	1K	6K	4K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
10K	36K	28K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 13.

1) Feed 1=?, Feed 2=3, Feed 3=?, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=3, Feed 4=?

3) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1

5) Feed 1=?, Feed 2=1, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 5 & 1 & -4 & 1 \\ -9 & 0 & 7 & -1 \\ 3 & -2 & -2 & -1 \\ -5 & 1 & 4 & 0 \end{pmatrix}$$
.
1) $\begin{pmatrix} ? & -6 & -9 & 6 \\ -1 & ? & -2 & 2 \\ 0 & -1 & ? & 1 \\ -2 & -2 & -3 & ? \end{pmatrix}$ 2) $\begin{pmatrix} ? & -2 & 1 & 3 \\ 3 & ? & 1 & 0 \\ -2 & -3 & ? & 4 \\ -5 & -4 & -2 & ? \end{pmatrix}$ 3) $\begin{pmatrix} ? & -2 & -6 & -4 \\ 0 & ? & -2 & 0 \\ 0 & 1 & ? & 2 \\ 0 & -1 & -2 & ? \end{pmatrix}$ 4)
 $\begin{pmatrix} ? & -2 & -2 & 0 \\ -2 & -3 & ? & 4 \\ -5 & -4 & -2 & ? \end{pmatrix}$ 6) $\begin{pmatrix} ? & -1 & -1 & -1 \\ 1 & ? & 0 & 0 \\ 1 & 0 & ? & 2 \\ 0 & 0 & 0 & ? \end{pmatrix}$ 7) $\begin{pmatrix} ? & 0 & -2 & 5 \\ -1 & ? & 0 & 2 \\ 2 & 0 & ? & -4 \\ -2 & -1 & -1 & ? \end{pmatrix}$

Exercise 2

How many of the vectors (n-tuples)

(-2 0 -1 2 -1), (2 0 1 -1 0), (-4 0 -2 3 -1), (-1 -2 2 1 -2), (-1 1 1 1 1), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (2 -8 5 0) is a linear combination of the vectors (-3 1 3 -3), (-2 2 1 -1), (-1 -1 2 -2), (1 0 0 0), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \cdot X - \begin{pmatrix} 1 & -2 & -2 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 3 & 3 \\ 0 & -4 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 1 & 1 & 1 & 0 \\ -2 & -1 & -4 & 2 \\ 2 & -1 & -3 & 1 \\ a & 1 & -2 & 1 \end{pmatrix}$ has determinant 6? 1) 5 2) 0 3) 3 4) 1 5) 2

Find the solution of the linear system

 $\begin{array}{l} x_1-22 \; x_2+16 \; x_3+x_4-2 \; x_6==-4 \\ -x_1-10 \; x_2+7 \; x_3-8 \; x_4-9 \; x_5-9 \; x_6==0 \\ -x_1+25 \; x_2-18 \; x_3+2 \; x_4+x_5-4 \; x_6==5 \\ -x_1+15 \; x_2-11 \; x_3-3 \; x_4-2 \; x_5+x_6==3 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	5K	2K	4K
Feed of company 2	7K	ЗК	6K
Feed of company 3	2K	1K	ЗК
Feed of company 4	7K	3K	2K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
74K	31K	54K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed 1=3, Feed 2=?, Feed 3=?, Feed 4=?

2) Feed 1=?, Feed 2=4, Feed 3=?, Feed 4=?

3) Feed 1=5, Feed 2=?, Feed 3=?, Feed 4=?

4) Feed 1=?, Feed 2=3, Feed 3=?, Feed 4=?

5) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & -3 & 2 & 2 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -6 & -1 & 0 \\ 1 & ? & 3 & 3 \\ -1 & -5 & ? & -2 \\ -1 & -6 & -2 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & 0 & 0 & 0 \\ 0 & ? & 2 & -1 \\ 0 & -1 & ? & 0 \\ 0 & 1 & 3 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -4 & 5 & -2 \\ 0 & ? & -2 & 1 \\ 0 & -1 & ? & -1 \\ 0 & -2 & 2 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & -1 & -1 & 0 \\ 1 & ? & -1 & 0 \\ 1 & -1 & ? & 0 \\ -1 & 1 & 3 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & -1 & -1 & 0 \\ -2 & ? & -1 & 2 \\ -1 & 0 & ? & 0 \\ 2 & -1 & 0 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & -1 & 1 & -1 \\ 1 & ? & -1 & 1 \\ 0 & -2 & ? & -1 \\ -1 & -2 & 5 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & -1 & 1 & 4 \\ 1 & ? & 0 & 1 \\ 4 & 2 & ? & 4 \\ 1 & -2 & 1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-1 0 2 0 -1), (-2 2 -2 1 2), (1 2 2 -1 2) , (1 1 -2 2 -1), (-3 0 -4 2 0), (1 0 -1 -2 -2), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5 6) 6

Exercise 3

Check whether the vector (n-tuple) (1 -5 -2 -4) is a linear combination of the vectors (-4 3 -1 2), (-4 4 0 4), (-1 -2 -1 1), (-2 2 0 2), (2 -1 1 0), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} X + \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & -1 & 2 \\ 4 & -2 & 1 \end{pmatrix}$ $1) \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \begin{pmatrix} * & * & 1 \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 1 & -1 & 2 & -1 \\ -2 & 1 & a & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 \end{pmatrix}$ has determinant -7? 1) 4 2) 2 3) 1 4) -2 5) -1

Find the solution of the linear system

 $\begin{array}{l} -5 \; x_1 + x_2 + x_3 - x_4 == -5 \\ -3 \; x_1 + x_3 - x_4 == 1 \\ 4 \; x_1 - x_2 - x_3 + 2 \; x_4 == 2 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	1K	6K	2K
Feed of company 2	8K	11K	5K
Feed of company 3	3K	5K	2K
Feed of company 4	6K	9K	4K

The experts of the livestock farm determined that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
55K	90K	38K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

- 1) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?
- 2) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?
- 3) Feed 1=?, Feed 2=?, Feed 3=2, Feed 4=?
- 4) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?
- 5) Feed 1=?, Feed 2=?, Feed 3=5, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 3 & 0 & 2 & 0 \\ -3 & 2 & -2 & -1 \\ 4 & 0 & 3 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -8 & -4 & 5 \\ 0 & ? & 1 & -1 \\ 0 & 1 & ? & -1 \\ 0 & -7 & -3 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & -7 & -4 & 5 \\ 1 & ? & -1 & 2 \\ -4 & 3 & ? & -2 \\ 2 & -2 & -1 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -5 & -3 & 2 \\ 0 & ? & 1 & -2 \\ 0 & -1 & ? & 0 \\ 0 & 2 & 2 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & 0 & -2 & 0 \\ 0 & ? & 0 & 1 \\ -4 & 0 & ? & 0 \\ -1 & -1 & 0 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & -2 & -1 & -1 \\ -1 & ? & 0 & 0 \\ 0 & 3 & ? & 2 \\ 1 & 2 & 1 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & -2 & 0 & -1 \\ -1 & ? & 0 & 2 \\ 0 & -1 & ? & 0 \\ 0 & -1 & ? & 0 \\ 3 & 1 & 0 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & -2 & 0 & -1 \\ 3 & ? & 1 & -1 \\ 1 & 0 & ? & 0 \\ -2 & 4 & 0 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-4 -2 -2 2), (-2 -1 -1 1), (0 1 0 -2), (-1 2 2 0), (-2 0 -1 -1), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (-7 6 5) is a linear combination of the vectors (2 -1 2), (0 -1 4), (2 0 -2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} X - \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -2 & -1 \\ 0 & -1 \end{pmatrix}$ $1) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 1 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 2 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} a & -2 & -1 & 1 \\ -1 & 0 & 1 & 1 \\ 2 & 0 & 2 & 1 \\ -1 & 1 & 3 & 2 \end{pmatrix}$ has determinant -7? 1) -1 2) -4 3) 4 4) -3 5) 3

Find the solution of the linear system

 $\begin{array}{l} 2 \ x_1 + x_2 - 2 \ x_3 - 2 \ x_4 == 4 \\ 3 \ x_1 + 2 \ x_2 - 3 \ x_3 + x_4 == -4 \end{array}$

taking as parameters, if it is necessary, the

- last variables and solving for the first ones (that is to say,
 - apply Gauss elimination technique selecting columns from left to right)
- . Express the solution by means of linear combinations.

 \rangle

1)
$$\begin{pmatrix} ?\\ ?\\ 0\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ 0\\ ?\\ \end{pmatrix}, \begin{pmatrix} ?\\ -8\\ ?\\ ? \end{pmatrix} \rangle$$

2) $\begin{pmatrix} ?\\ ?\\ -5\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ -1 \end{pmatrix} \rangle$
3) $\begin{pmatrix} ?\\ 2\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ -5\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ 6\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -1 \end{pmatrix}$
4) $\begin{pmatrix} 9\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} 7\\ ?\\ ?\\ ?\\ ? \end{pmatrix} \rangle$
5) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ 2\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} \rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	4K	1K	6K
Feed of company 2	3K	2K	6K
Feed of company 3	2K	2K	5K
Feed of company 4	2K	1K	4K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
27К	14K	51K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 4 to be equal to 4.

- 1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=4
- 2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1
- 3) Feed 1=?, Feed 2=2, Feed 3=?, Feed 4=?
- 4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0
- 5) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 3 & -1 & 0 & 2 \\ 1 & 0 & 0 & 1 \\ 2 & -1 & 0 & 2 \\ 1 & -2 & -1 & 1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -2 & 4 & -7 \\ 0 & ? & -1 & 2 \\ -3 & 2 & ? & 6 \\ 3 & 0 & 1 & ? \end{pmatrix}$$

2)
$$\begin{pmatrix} ? & 0 & -1 & 0 \\ 0 & ? & -1 & 0 \\ 0 & -3 & ? & -1 \\ -1 & 1 & 1 & ? \end{pmatrix}$$

3)
$$\begin{pmatrix} ? & -1 & -1 & 0 \\ 1 & ? & 1 & 1 \\ 0 & 3 & ? & -3 \\ 0 & -1 & -1 & ? \end{pmatrix}$$

4)
$$\begin{pmatrix} ? & -1 & 0 & 0 \\ 0 & 3 & ? & -3 \\ 0 & -1 & -1 & ? \end{pmatrix}$$

()
$$\begin{pmatrix} ? & -1 & 0 & 0 \\ -1 & ? & -1 & 2 \\ 0 & 1 & ? & -3 \\ -1 & 0 & -1 & ? \end{pmatrix}$$

5)
$$\begin{pmatrix} ? & -1 & 1 & 0 \\ -3 & ? & 3 & -2 \\ -2 & 3 & ? & -1 \\ -1 & 2 & 0 & ? \end{pmatrix}$$

6)
$$\begin{pmatrix} ? & -1 & 3 & 0 \\ -2 & ? & 0 & 1 \\ -2 & -1 & ? & 0 \\ -1 & -1 & 2 & ? \end{pmatrix}$$

7)
$$\begin{pmatrix} ? & 0 & -1 & -1 \\ -2 & ? & 1 & 1 \\ -1 & 0 & 0 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(0 1 0 0 2), (-1 -1 -2 2 1), (-2 2 -1 2 2), (-2 -2 1 2 2), (-4 0 0 4 4), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (-6 -8 5 7) is a linear combination of the vectors (2 0 -1 -1), (0 -2 1 0), (-1 2 1 2), (-2 -1 1 0), (-3 1 2 2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

$$\begin{pmatrix} 1 & -2 & -1 \\ -1 & 2 & 0 \\ 1 & -1 & 1 \end{pmatrix}^{-1} \cdot X - \begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -4 \\ -1 & 0 & -2 \\ -1 & 2 & 2 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 2 & * \\ * & * & * \\ * & * & * \end{pmatrix}$$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 1 & -1 & -1 \\ 2 & -1 & a & 1 \\ 0 & 0 & 2 & 1 \end{pmatrix} \text{ has determinant } -4? \\ 1) & -5 & 2) & -3 & 3) & -4 & 4) & 4 & 5) & 0 \\ \end{cases}$

Find the solution of the linear system

 $\begin{array}{c} -3 \; x_1 + 5 \; x_2 - 3 \; x_4 - 4 \; x_5 - 2 \; x_6 == 6 \\ x_1 - 2 \; x_2 - 5 \; x_3 + x_4 + 2 \; x_5 + x_6 == 0 \\ -x_1 + 4 \; x_2 - 5 \; x_3 + x_4 + 3 \; x_5 + x_6 == 3 \\ -x_1 - x_2 - 3 \; x_4 - 5 \; x_5 - 2 \; x_6 == 3 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	15K	5K	12K
Feed of company 2	21K	7K	17K
Feed of company 3	19K	6К	15K
Feed of company 4	17K	4K	12K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
38K	12K	30K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 4 to be equal to 0.

1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

2) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?

3) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

4) Feed 1=?, Feed 2=?, Feed 3=1, Feed 4=?

5) Feed 1=?, Feed 2=3, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 2 & 3 & 0 & -3 \\ 1 & 2 & 0 & -2 \\ 0 & -1 & 1 & 1 \\ -2 & -4 & 2 & 5 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -5 & -3 & -1 \\ -1 & ? & 1 & 0 \\ -2 & 5 & ? & 2 \\ -1 & 2 & 1 & ? \end{pmatrix}$$

2)
$$\begin{pmatrix} ? & -5 & 3 & 0 \\ -1 & ? & -5 & 1 \\ -3 & 4 & ? & -1 \\ 0 & 1 & -2 & ? \end{pmatrix}$$

3)
$$\begin{pmatrix} ? & -3 & 0 & 0 \\ 1 & ? & -2 & 1 \\ -1 & 2 & ? & 0 \\ 2 & -2 & -2 & ? \end{pmatrix}$$

4)
$$\begin{pmatrix} ? & -1 & 2 & -1 \\ -1 & 2 & ? & 0 \\ 2 & -2 & -2 & ? \end{pmatrix}$$

()
$$\begin{pmatrix} ? & -1 & 2 & -3 \\ -2 & 7 & 2 & -4 \\ 0 & 0 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

5)
$$\begin{pmatrix} ? & -1 & 0 & -1 \\ -2 & ? & 2 & -4 \\ 0 & -1 & ? & 0 \\ 1 & -1 & -2 & ? \end{pmatrix}$$

6)
$$\begin{pmatrix} ? & -1 & 2 & -3 \\ -3 & ? & 4 & -3 \\ -2 & -1 & ? & -2 \\ -2 & -2 & 3 & ? \end{pmatrix}$$

7)
$$\begin{pmatrix} ? & -1 & 2 & -1 & 2 \\ -2 & -3 & 2 & ? \\ -2 & -3 & 2 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

```
(20-2-1), (0-1-1-1), (-210-2),
are independent?
1)1223)3
```

Exercise 3

Check whether the vector (n-tuple) (9 1 6) is a linear combination of the vectors (-3 -1 -3), (-1 -1 -2), (-2 0 -1), (-4 0 -2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} -4 & 1 \\ -5 & 1 \end{pmatrix} \cdot \mathbf{X} \cdot \begin{pmatrix} -1 & -1 \\ 3 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{15} & 6 \\ \mathbf{20} & 8 \end{pmatrix}$ $\mathbf{1} \cdot \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \quad \mathbf{2} \cdot \begin{pmatrix} \mathbf{0} & * \\ * & * \end{pmatrix} \quad \mathbf{3} \cdot \begin{pmatrix} \mathbf{1} & * \\ * & * \end{pmatrix} \quad \mathbf{4} \cdot \begin{pmatrix} -\mathbf{1} & * \\ * & * \end{pmatrix} \quad \mathbf{5} \cdot \begin{pmatrix} * & -2 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 0 & -2 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ -2 & a & 1 & 0 \\ 1 & 1 & -2 & -2 \end{pmatrix} \text{ has determinant } -9?$ 1) 1 2) 3 3) -5 4) -3 5) 0

Find the solution of the linear system

 $\begin{array}{r} -3 \; x_1 - x_2 + 9 \; x_3 - 2 \; x_4 == 3 \\ 5 \; x_1 - 2 \; x_2 - 4 \; x_3 + x_4 == 0 \\ -2 \; x_1 + 3 \; x_2 - 5 \; x_3 + x_4 == -3 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} 10\\ ?\\ ?\\ ?\\ ?\\ \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ 2\\ ?\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ -2\\ ?\\ -2\\ ?\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ 1\\ ?\\ 1\\ \end{pmatrix}, \begin{pmatrix} ?\\ -10\\ ?\\ ?\\ 1\\ ?\\ \end{pmatrix}, \begin{pmatrix} ?\\ -10\\ ?\\ ?\\ ?\\ ?\\ ?\\ 24 \end{pmatrix}$$

3) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ -6\\ \end{pmatrix}$
4) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -6\\ \end{pmatrix}$
5) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ ?\\ ?\\ ?\\ ?\\ ?\\ ?\\ -34 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ -34 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ 19 \end{pmatrix}$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
animal flours	1K	ЗК	өк	4K
vegetable flours	4K	1K	1K	ЗК
fish flours	4K	2K	1K	4K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
20K	24K	29K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 10.

- 1) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?
- 2) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?
- 3) Feed 1=4, Feed 2=?, Feed 3=?, Feed 4=?
- 4) Feed 1=?, Feed 2=1, Feed 3=?, Feed 4=?
- 5) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} -1 & 2 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ -2 & -1 & 1 & -1 \\ 2 & 0 & -1 & 1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -7 & 2 & 5 \\ 2 & ? & -1 & -1 \\ 1 & 2 & ? & -2 \\ -1 & -1 & 1 & ? \end{pmatrix}$$
 2)
$$\begin{pmatrix} ? & -1 & 0 & 1 \\ 0 & ? & -1 & -1 \\ 2 & -1 & ? & 3 \\ 0 & 1 & 2 & ? \end{pmatrix}$$
 3)
$$\begin{pmatrix} ? & -4 & -2 & 3 \\ 1 & ? & 1 & 0 \\ 0 & 1 & ? & -1 \\ -1 & 1 & 0 & ? \end{pmatrix}$$
 4)
$$\begin{pmatrix} ? & -2 & 1 & 0 \\ 0 & 1 & ? & -1 \\ -1 & 1 & 0 & ? \end{pmatrix}$$
 4)
$$\begin{pmatrix} ? & -2 & 1 & 0 \\ 0 & ? & -2 & 0 \\ 1 & -5 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}$$
 5)
$$\begin{pmatrix} ? & -1 & -1 & -1 \\ -1 & ? & -1 & 1 \\ 1 & -2 & ? & -1 \\ 0 & -1 & 0 & ? \end{pmatrix}$$
 6)
$$\begin{pmatrix} ? & -1 & -1 & 0 \\ 1 & ? & -1 & -1 \\ -3 & 2 & ? & 0 \\ 5 & -3 & -3 & ? \end{pmatrix}$$
 7)
$$\begin{pmatrix} ? & -1 & 0 & -3 \\ 2 & ? & -2 & -3 \\ -1 & 1 & ? & 2 \\ 1 & 0 & -1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

```
(2 -2 0 -2), (-1 2 -2 -1), (-2 0 2 -2),
are independent?
1) 1 2) 2 3) 3
```

Exercise 3

Check whether the vector (n-tuple) $(-2 \ 2 \ -2)$ is a linear combination of the vectors

 $(-4 \ 4 \ -4)$, $(-2 \ 2 \ -2)$, 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{-1} \cdot \begin{pmatrix} X + \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -1 & 0 & 0 & -2 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 1 & a \\ 1 & 1 & 2 & 2 \end{pmatrix}$ has determinant -4? 1) 0 2) 1 3) 4 4) -4 5) 2

Find the solution of the linear system

 $\begin{array}{l} 10 \, x_1 - 10 \, x_2 - 10 \, x_3 - x_4 + 2 \, x_5 == -2 \\ -2 \, x_1 + 5 \, x_2 + 2 \, x_3 + 2 \, x_4 - 3 \, x_5 == 2 \\ 4 \, x_1 + 5 \, x_2 - 4 \, x_3 + 5 \, x_4 - 7 \, x_5 == 4 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 0\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ -21 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 17 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 16 \end{pmatrix} \rangle$$

2) $\begin{pmatrix} -3\\ ?\\ ?\\ ?\\ 16 \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ -25 \\ ?\\ 19 \\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ 19 \\ ?\\ 19 \\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ 27 \\ ?\\ 27 \\ ? \\ 27 \\ ? \end{pmatrix} \rangle$
3) $\begin{pmatrix} ?\\ 0\\ ?\\ ?\\ ?\\ ?\\ -18 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 20 \\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 18 \end{pmatrix} \rangle$
4) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ -6 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ -18 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 20 \\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 18 \end{pmatrix} \rangle$
5) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix}$

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	2K	1K	ØK
Feed of company 2	33K	19K	2K
Feed of company 3	12K	7K	1K
Feed of company 4	33K	19K	3K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
172K	99K	12K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9.

1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1

2) Feed 1=?, Feed 2=?, Feed 3=2, Feed 4=?

3) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

5) Feed 1=?, Feed 2=2, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & 1 & -1 & -1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & -2 & 1 & 1 \end{pmatrix}$$
$$1) \quad \begin{pmatrix} ? & 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & -2 & 1 & 1 \end{pmatrix}$$
$$2) \quad \begin{pmatrix} ? & -2 & 0 & 0 \\ 0 & ? & 1 & 2 \\ 0 & -4 & ? & 3 \\ 0 & 2 & -1 & ? \end{pmatrix}$$
$$3) \quad \begin{pmatrix} ? & -2 & 1 & -2 \\ -1 & ? & 1 & -3 \\ 0 & -2 & ? & -1 \\ 1 & 0 & 0 & ? \end{pmatrix}$$
$$4)$$
$$\begin{pmatrix} ? & -2 & 2 & -3 \\ 0 & -2 & ? & -1 \\ 1 & 0 & 0 & ? \end{pmatrix}$$
$$4)$$
$$\begin{pmatrix} ? & -2 & 2 & -3 \\ 0 & 1 & ? & 1 \\ 1 & 1 & 2 & ? \end{pmatrix}$$
$$5) \quad \begin{pmatrix} ? & -1 & -1 & 1 \\ 0 & ? & 1 & 1 \\ 1 & -2 & -2 & ? \\ 1 & -2 & -2 & ? \end{pmatrix}$$
$$6) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 0 & ? & 0 & 1 \\ 0 & -1 & ? & 0 \\ -1 & 0 & -1 & ? \end{pmatrix}$$
$$7) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 3 & ? & -1 & -2 \\ -1 & -1 & ? & 1 \\ -2 & 0 & 1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(0 2 -2 1), (2 -2 -2 1), (-1 -2 1 -2), (-1 -1 -2 0), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (2 -2 -3) is a linear combination of the vectors $(-1 \ 2 \ 0)$, $(0 \ -2 \ -1)$, $(-1 \ 2 \ 2)$, 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

$$\begin{pmatrix} 0 & -1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} X + \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & -2 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ a & 0 & 1 & -1 \\ 0 & 0 & -2 & 1 \end{pmatrix}$ has determinant 4? 1) 5 2) -2 3) 3 4) 1 5) -4

Find the solution of the linear system

 $\begin{array}{r} -4 \; x_1 - 4 \; x_2 + 5 \; x_3 + 3 \; x_4 == -2 \\ -4 \; x_1 + 3 \; x_2 + 3 \; x_3 + 2 \; x_4 == 3 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1)	$\begin{pmatrix} ?\\ ?\\ -13\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ -4\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -27 \end{pmatrix} \rangle$
2)	$\left(\begin{array}{c} \mathbf{?}\\ 1\\ \mathbf{?}\\ \mathbf{?}\\ \mathbf{?} \end{array}\right) + \left\langle \left(\begin{array}{c} \mathbf{?}\\ \mathbf{?}\\ -8\\ \mathbf{?}\\ \mathbf{?} \end{array}\right) \right\rangle$
3)	$\left(\begin{array}{c} ?\\ ?\\ ?\\ -9 \end{array}\right) + \left\langle \left(\begin{array}{c} -9\\ ?\\ ?\\ ?\\ ? \end{array}\right) \right\rangle$
4)	$ \left(\begin{array}{c} ?\\ ?\\ -11\\ ?\end{array}\right) + \left\langle \left(\begin{array}{c} ?\\ ?\\ ?\\ 10\end{array}\right), \left(\begin{array}{c} ?\\ ?\\ 20\\ ?\end{array}\right)\right\rangle $
5)	$\left(\begin{array}{c} ?\\ ?\\ -14\\ ?\end{array}\right)+\left\langle \begin{array}{c} ?\\ ?\\ 9\\ 9\end{array}\right), \left(\begin{array}{c} ?\\ ?\\ ?\\ -24\end{array}\right)\right\rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	ЗК	19K	5K
Feed of company 2	4K	27K	7K
Feed of company 3	1K	7K	2K
Feed of company 4	3K	22K	6K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
43K	290K	77K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 16.

- 1) Feed 1=?, Feed 2=?, Feed 3=3, Feed 4=?
- 2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1
- 3) Feed 1=4, Feed 2=?, Feed 3=?, Feed 4=?
- 4) Feed 1=?, Feed 2=?, Feed 3=2, Feed 4=?
- 5) Feed 1=?, Feed 2=?, Feed 3=4, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 2 & 1 & -1 & -1 \\ 1 & 4 & 1 & 0 \\ 1 & 3 & 1 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -11 & -7 & 1 \\ -2 & ? & 5 & -2 \\ -2 & 11 & ? & -2 \\ 5 & -22 & -14 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & -1 & 1 & 1 \\ 0 & ? & -1 & 0 \\ -1 & -2 & ? & -1 \\ 2 & 1 & -2 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -4 & 3 & -3 \\ 11 & ? & -2 & 3 \\ 8 & 2 & ? & 2 \\ -15 & -4 & 3 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & -3 & -5 & 3 \\ 2 & ? & 5 & -3 \\ -3 & -1 & ? & 2 \\ -4 & -5 & -8 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & -1 & 0 & -1 \\ -1 & ? & -2 & 0 \\ 0 & 1 & ? & 2 \\ 1 & 0 & 1 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & -1 & 0 & 0 \\ -1 & ? & -4 & -1 \\ 0 & 2 & ? & -1 \\ -1 & 2 & 0 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & -1 & 0 & 0 \\ 0 & ? & 1 & 1 \\ 1 & -2 & ? & 2 \\ 0 & 0 & -1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

```
( -2 -1 -2 1 ), ( 1 -2 0 0 ), ( -1 0 1 0 ),
are independent?
1) 1 2) 2 3) 3
```

Exercise 3

Check whether the vector (n-tuple) (-4 -8 -5) is a linear combination of the vectors (0 -2 0), (-1 1 0), (0 -1 0), (1 -2 0), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

$$\begin{pmatrix} X + \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & -1 \\ 8 & 6 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 1 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 2 \\ * & * \end{pmatrix}$$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 1 \\ 2 & -2 & 0 & 1 \\ 2 & a & 1 & 1 \end{pmatrix}$ has determinant 7? 1) 1 2) 0 3) 3 4) -3 5) 2

Find the solution of the linear system

 $\begin{array}{l} 2 \; x_1 - 8 \; x_3 - 4 \; x_4 - 8 \; x_5 == 8 \\ x_1 + x_2 + 4 \; x_4 + 4 \; x_5 == 0 \\ -2 \; x_1 - x_2 + 4 \; x_3 - 2 \; x_4 == -4 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different

proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	7K	15K	10K
Feed of company 2	3K	6K	4K
Feed of company 3	3K	8K	5K
Feed of company 4	5K	12K	8K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
56K	133K	87K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2

2) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?

3) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=3

5) Feed 1=?, Feed 2=?, Feed 3=5, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & 2 & -1 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & -2 & -1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -8 & -6 & -1 \\ 1 & ? & 4 & 1 \\ 1 & 7 & ? & 2 \\ 0 & -5 & -4 & ? \end{pmatrix}$$
 2)
$$\begin{pmatrix} ? & -3 & -1 & 0 \\ 0 & ? & 1 & 0 \\ 1 & -3 & ? & 1 \\ 3 & -6 & -1 & ? \end{pmatrix}$$
 3)
$$\begin{pmatrix} ? & -1 & -2 & -1 \\ 0 & ? & 0 & 0 \\ 1 & -1 & ? & 0 \\ -2 & 3 & 1 & ? \end{pmatrix}$$
 4)

$$\begin{pmatrix} ? & -3 & -2 & -4 \\ 0 & ? & 1 & 0 \\ 2 & -1 & ? & -2 \\ 1 & -1 & 0 & ? \end{pmatrix}$$
 5)
$$\begin{pmatrix} ? & -1 & -1 & -1 \\ 1 & ? & -1 & -1 \\ 0 & -1 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}$$
 6)
$$\begin{pmatrix} ? & -1 & 0 & 1 \\ 2 & ? & 0 & -1 \\ 2 & 2 & ? & 1 \\ -3 & -4 & 0 & ? \end{pmatrix}$$
 7)
$$\begin{pmatrix} ? & -1 & 1 & 0 \\ 1 & ? & 0 & -2 \\ 0 & 0 & ? & 2 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(1 2 2 -1), (-4 0 0 -4), (-1 1 -2 -2), (-2 0 0 -2), (-3 -2 -2 -1), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) $(-1 \ 1 \ 0)$ is a linear combination of the vectors $(-1 \ 1 \ 0)$, $(-2 \ 2 \ 0)$, 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 3 & 5 \\ -5 & -8 \end{pmatrix} \cdot X + \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 5 \\ -9 & -7 \end{pmatrix}$ $1) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 2 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * \\ -1 & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

Find the solution of the linear system

 $\begin{array}{l} 3 \; x_1 - 2 \; x_2 - 2 \; x_3 + 3 \; x_4 + 5 \; x_5 == 1 \\ 4 \; x_1 + x_3 - 5 \; x_4 - 8 \; x_5 == -3 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} ?\\ ?\\ ?\\ -3\\ ?\\ \end{pmatrix} + \langle \begin{pmatrix} ?\\ 3\\ ?\\ ?\\ ?\\ ?\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -1\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -1\\ 2\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -1\\ 2\\ -2\\ \end{pmatrix} \rangle$$

2) $\begin{pmatrix} 2\\ ?\\ ?\\ ?\\ ?\\ ?\\ -2\\ \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -2\\ 2\\ -2\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -14\\ ?\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -12\\ ?\\ -12\\ ?\\ \end{pmatrix} \rangle$
3) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -2\\ 2\\ -2\\ \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -2\\ 7\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -14\\ ?\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -12\\ ?\\ -12\\ ?\\ \end{pmatrix} \rangle$
4) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -14\\ ?\\ \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -27\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -16\\ ?\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -16\\ ?\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -11\\ ?\\ \end{pmatrix} \rangle$
5) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -1\\ ?\\ ?\\ -26\\ \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ -26\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -15\\ ?\\ \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 10\\ \end{pmatrix} \rangle$

Every company pr proportions as w	m, animal feed from s roduces feed combining we can see in the tabl ery component that inc	different types of f e below which indicat	flour in different tes the amount of	
animal flours vegetable flours fish flours	Feed of company 1 17K 9K 4K	Feed of company 2 17K 10K 5K	Feed of company 3 13K 7K 3K	Feed of compa 3K 2K 1K
•	livestock farm deter each animal needs the		on:	
	egetable flours fis 6K 17H			
recommended com	every company are nec nposition taking into L number of sacks for	account that, to prop	•	
1) Feed 1=?, Feed	2=?, Feed 3=?, Feed 4	=2		
2) Feed 1=?, Feed	2=?, Feed 3=?, Feed 4	=1		
3) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?				
4) Feed 1=?, Feed	2=?, Feed 3=?, Feed 4	=5		

5) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 4 & 3 & -1 & -3 \\ 1 & 1 & -1 & 0 \\ 2 & 2 & -1 & -1 \\ -1 & -1 & 1 & 1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & 2 & -2 & 1 \\ -1 & ? & 3 & 0 \\ 0 & -1 & ? & 1 \\ 0 & 1 & 0 & ? \end{pmatrix} = 2) \begin{pmatrix} ? & -3 & -2 & 0 \\ 2 & ? & 1 & -3 \\ 1 & 0 & ? & -1 \\ -1 & 1 & 0 & ? \end{pmatrix} = 3) \begin{pmatrix} ? & -1 & -2 & 2 \\ -3 & ? & 1 & -1 \\ -4 & 1 & ? & -1 \\ 8 & -3 & -3 & ? \end{pmatrix} = 4)$$

$$\begin{pmatrix} ? & -1 & 1 & 0 \\ -2 & ? & -4 & -2 \\ 0 & 3 & ? & -1 \\ 1 & -4 & 1 & ? \end{pmatrix} = 5) \begin{pmatrix} ? & -1 & 2 & 0 \\ -1 & ? & 0 & 2 \\ 0 & -1 & ? & -1 \\ 0 & 1 & -2 & ? \end{pmatrix} = 6) \begin{pmatrix} ? & 0 & 0 & 0 \\ 0 & ? & 0 & 1 \\ -1 & 0 & 0 & ? \end{pmatrix} = 7) \begin{pmatrix} ? & 0 & 0 & 0 \\ 2 & ? & -1 & -1 \\ -2 & 0 & ? & 1 \\ 1 & 0 & -1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(1 -1 1 1), (1 -1 1 2), (0 1 -2 0), (-1 -2 -2 2), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (-4 -3 5) is a linear combination of the vectors (-1 2 -1), (1 -2 2), (1 0 0), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} X - \begin{pmatrix} -1 & 4 \\ -1 & 3 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ 4 & -1 \end{pmatrix}$ 1) $\begin{pmatrix} -2 & * \\ * & * \end{pmatrix}$ 2) $\begin{pmatrix} -1 & * \\ * & * \end{pmatrix}$ 3) $\begin{pmatrix} 2 & * \\ * & * \end{pmatrix}$ 4) $\begin{pmatrix} * & -2 \\ * & * \end{pmatrix}$ 5) $\begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 1 & 0 & -1 & 2 \\ 1 & 1 & 0 & 1 \\ 0 & -1 & -1 & 2 \\ -2 & a & 1 & 1 \end{pmatrix} \text{ has determinant } -2? \\ 1) 4 & 2) 0 & 3) -5 & 4) -3 & 5) 1 \\ \end{cases}$

Find the solution of the linear system

 $\begin{array}{c} -6 \; x_1 + 2 \; x_2 + x_3 - 2 \; x_4 + 7 \; x_5 == 9 \\ -3 \; x_1 + 5 \; x_2 - x_4 + 4 \; x_5 == 5 \\ -3 \; x_1 - 3 \; x_2 + x_3 - x_4 + 3 \; x_5 == 4 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	9K	6K	1K
Feed of company 2	8K	6K	1K
Feed of company 3	1K	1K	өк
Feed of company 4	13K	8K	2К

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
110K	72K	15K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2

2) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

3) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1

4) Feed 1=3, Feed 2=?, Feed 3=?, Feed 4=?

5) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=4

Exercise 1

Compute the inverse of the matrix	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$1) \begin{pmatrix} ? & -6 & 3 & 3 \\ 2 & ? & 1 & 1 \\ 0 & -4 & ? & 0 \\ -3 & 5 & -2 & ? \end{pmatrix} 2) \begin{pmatrix} ? & -5 & -9 \\ 0 & ? & 6 \\ -1 & 2 & ? \\ 1 & -2 & -4 \end{pmatrix}$	$ \begin{pmatrix} 6 \\ -5 \\ -2 \\ ? \end{pmatrix} 3) \begin{pmatrix} ? & -4 & 7 & 0 \\ 7 & ? & 10 & 0 \\ -3 & 2 & ? & 0 \\ -2 & 3 & -5 & ? \end{pmatrix} 4) $
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Exercise 2

How many of the vectors (n-tuples)

(2 -2 -1 -1 -1), (-4 -4 4 0 0), (-1 -1 4 2 -1), (-2 -2 2 0 0), (1 1 2 2 -1), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (-4 -8 7 -5) is a linear combination of the vectors (1 0 0 2), (1 -1 1 -1), (0 2 -2 0), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} -1 & -2 & 2 \\ 0 & 1 & 0 \\ -1 & -2 & 1 \end{pmatrix} \cdot X \cdot \begin{pmatrix} -1 & 1 & -2 \\ -1 & 2 & -3 \\ 2 & -1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 11 & -3 & 5 \\ -1 & 0 & -1 \\ 8 & -2 & 4 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & 2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & -2 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ -2 & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 1 & -1 & 0 & 2 \\ a & 2 & 0 & 1 \\ 0 & -3 & 2 & 3 \\ 2 & -2 & 1 & 2 \end{pmatrix}$ has determinant -14? 1) 5 2) 0 3) -3 4) 3 5) -1

Find the solution of the linear system

 $\begin{array}{l} -2 \, x_1 \, + \, x_2 \, = \, 4 \\ 2 \, x_1 \, + \, x_2 \, + \, 5 \, x_3 \, = \, -5 \\ - \, x_1 \, - \, x_2 \, - \, 4 \, x_3 \, = \, 3 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} ?\\ 2\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ -5\\ ? \end{pmatrix}, \begin{pmatrix} 9\\ ?\\ ? \end{pmatrix} \rangle$$

2) $\begin{pmatrix} ?\\ 1\\ ? \end{pmatrix}$
3) $\begin{pmatrix} 9\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} 3\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ -2 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ -4 \end{pmatrix}, \begin{pmatrix} 7\\ ?\\ ? \end{pmatrix} \rangle$
4) $\begin{pmatrix} ?\\ 4\\ ? \end{pmatrix}$
5) $\begin{pmatrix} ?\\ 2\\ ? \end{pmatrix}$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	45K	69K	77K
Feed of company 2	28K	46K	50K
Feed of company 3	46K	71K	79K
Feed of company 4	30K	47K	52K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours vegetable flours fish flours 310K 488K 539K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9.

1) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1

3) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

4) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

5) Feed 1=?, Feed 2=3, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix $\begin{pmatrix} 0 & 1 & 3 & -2 \\ -1 & 0 & -1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$.	
$1) \begin{pmatrix} ? & -4 & -1 & 1 \\ 2 & ? & 1 & -1 \\ 0 & 2 & ? & -1 \\ 0 & 0 & 0 & ? \end{pmatrix} 2) \begin{pmatrix} ? & -3 & 2 & 0 \\ 0 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ 1 & -3 & 0 & ? \end{pmatrix} 3) \begin{pmatrix} ? & 3 & -1 & 3 \\ 0 & ? & 1 & -1 \\ -1 & -4 & ? & -3 \\ -2 & -6 & 2 & ? \end{pmatrix}$	4)
$-\begin{pmatrix} ? & 0 & -3 & -2 \\ -1 & ? & -1 & 0 \\ -1 & 1 & ? & 0 \\ 0 & 0 & 2 & ? \end{pmatrix} 5) \begin{pmatrix} ? & 0 & -1 & 0 \\ -2 & ? & 0 & 1 \\ 3 & -1 & ? & -1 \\ 0 & 0 & 0 & ? \end{pmatrix} 6) \begin{pmatrix} ? & 0 & -1 & 0 \\ -1 & ? & 1 & 0 \\ 1 & 1 & ? & -2 \\ 1 & -1 & 2 & ? \end{pmatrix}$	$(7) \left(\begin{array}{cccc} ? & 0 & -1 & 1 \\ 0 & ? & -1 & -1 \\ 1 & -1 & ? & 2 \\ 0 & 1 & 0 & ? \end{array}\right)$

Exercise 2

How many of the vectors (n-tuples)

(-2 1 -2 1), (-4 -2 -4 -4), (-2 -1 -2 -2), (1 2 2 1), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector $(n\mbox{-tuple})$ $(\mbox{-}6\mbox{-}4\mbox{-}2\mbox{-})$ is a linear combination of the vectors

(1 -2 -1), (2 0 -1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} -2 & -1 \\ -3 & -2 \end{pmatrix} \cdot X - \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -4 \end{pmatrix}$ $1) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 1 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 2 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 0 & 1 & -1 \\ -1 & 1 & -2 & a \\ 1 & 1 & 0 & -2 \end{pmatrix}$ has determinant -1? 1) 2 2) 0 3) 3 4) 5 5) -2

Find the solution of the linear system

 $\begin{array}{r} -5 \; x_1 - 2 \; x_2 - 7 \; x_3 - 4 \; x_4 == -9 \\ -5 \; x_1 - x_2 - 2 \; x_3 - x_4 == -3 \\ 5 \; x_1 - 3 \; x_3 - 2 \; x_4 == -3 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	4K	2K	ЗК
Feed of company 2	6K	3K	4K
Feed of company 3	11K	6K	9K
Feed of company 4	2K	2K	4K

The experts of the livestock farm determined that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
42K	26K	43K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9.

- 1) Feed 1=?, Feed 2=?, Feed 3=1, Feed 4=?
- 2) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?
- 3) Feed 1=3, Feed 2=?, Feed 3=?, Feed 4=?
- 4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1
- 5) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & -4 & -2 & -3 \\ -1 & 14 & 7 & 10 \\ 0 & 9 & 5 & 7 \\ 0 & 4 & 2 & 3 \end{pmatrix}$$
$$1) \quad \begin{pmatrix} ? & 0 & 0 & 1 \\ 1 & ? & -1 & 0 \\ 1 & 1 & ? & -7 \\ -2 & -2 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -6 & 2 & 0 \\ 6 & ? & 2 & 1 \\ 0 & 1 & ? & -1 \\ 5 & -7 & 2 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -3 & 0 & -1 \\ 1 & ? & 0 & 1 \\ 0 & 1 & ? & 0 \\ -1 & -2 & 0 & ? \end{pmatrix} \quad 4)$$
$$\begin{pmatrix} ? & -2 & -2 & 1 \\ -1 & ? & 1 & -1 \\ -2 & 2 & ? & -1 \\ -3 & 3 & 4 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & -1 & 3 \\ -4 & ? & 2 & -4 \\ -1 & 0 & ? & -1 \\ 3 & -2 & -2 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -2 & 0 & 0 \\ 0 & ? & 1 & 0 \\ -1 & 2 & ? & 0 \\ 1 & -2 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & -3 & -1 \\ -3 & ? & 5 & -1 \\ 0 & 0 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(2 -2 1 2 0), (0 0 1 0 -1), (2 0 0 0 -2), (-3 1 1 -2 0), (-1 1 1 -2 -2), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (-4 -4 -6 1) is a linear combination of the vectors (0 0 -2 -1), (1 1 -2 -2), (0 0 1 0), (-1 -1 3 2), (0 0 -4 -2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \cdot X - \begin{pmatrix} 4 & 2 & 1 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -6 & -3 & 1 \\ -1 & 0 & 0 \\ -2 & 0 & -2 \end{pmatrix}$ $1) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & 1 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} a & 1 & -2 & 1 \\ -1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 1 \\ -1 & 2 & 1 & 1 \end{pmatrix} \text{ has determinant } -19? \\ 1) & -5 & 2) & -3 & 3) & 0 & 4) & -1 & 5) & -4 \\ \end{cases}$

Find the solution of the linear system

 $\begin{array}{l} 4 \; x_1 \,+\, 4 \; x_2 \,-\, x_3 \,-\, 5 \; x_4 \,=\, 4 \\ x_1 \,+\, x_2 \,+\, 4 \; x_4 \,+\, 4 \; x_5 \,=\, 5 \\ x_1 \,+\, 2 \; x_3 \,+\, 5 \; x_5 \,=\, -5 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

>

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	11K	3K	20K
Feed of company 2	ЗК	1K	5K
Feed of company 3	7K	2K	13K
Feed of company 4	11K	ЗК	18K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
79K	22K	144K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 1 to be equal to 5.

1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

2) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

3) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?

4) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?

5) Feed 1=3, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & -2 & 1 & 0 \\ 1 & -1 & 1 & 0 \\ -1 & -4 & 2 & 2 \\ 0 & -2 & 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} ? & -4 & -2 & 0 \\ -1 & ? & 1 & 0 \\ -3 & 3 & ? & 0 \\ -1 & 0 & 0 & ? \end{pmatrix} = 2 \begin{pmatrix} ? & -4 & 0 & 3 \\ 0 & ? & -1 & -7 \\ -1 & -4 & ? & 3 \\ 1 & 7 & -2 & ? \end{pmatrix} = 3 \begin{pmatrix} ? & 0 & -1 & 2 \\ -1 & ? & 0 & 0 \\ -1 & 2 & ? & -2 \\ -1 & 0 & -1 & ? \end{pmatrix} = 4 \end{pmatrix}$$
$$\begin{pmatrix} ? & -3 & -2 & 2 \\ 0 & ? & -1 & 0 \\ 1 & -1 & ? & 1 \\ 1 & 0 & -1 & ? \end{pmatrix} = 5 \begin{pmatrix} ? & -2 & -4 & -3 \\ 0 & 1 & ? & 1 \\ 0 & 1 & ? & 1 \\ 1 & -1 & -2 & ? \end{pmatrix} = 6 \begin{pmatrix} ? & -2 & 1 & 0 \\ 0 & ? & -1 & -1 \\ 0 & -1 & ? & -1 \\ -3 & 2 & 1 & ? \end{pmatrix} = 7 \begin{pmatrix} ? & -2 & 2 & -3 \\ 2 & ? & -2 & 1 \\ 2 & 1 & ? & 2 \\ -1 & 0 & 0 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-1 0 2 -2 0), (2 2 2 -2 0), (0 -2 1 1 1), (1 -2 0 1 -2), (-1 2 -1 2 -1), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) $(-1 -5 \ 0 -5)$ is a linear combination of the vectors (0 2 -1 2), (-1 -1 -2 -1), (-2 -2 -4 -2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

$$\begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} X - \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} -1 & 4 & 1 \\ -1 & 2 & 1 \\ -1 & 4 & 1 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 0 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix}$$

Exercise 5

Compute the value for parameter a in such a way that the matrix

```
 \begin{pmatrix} -1 & 1 & 0 & a \\ 0 & 1 & 0 & -2 \\ 0 & 1 & -1 & -1 \\ 1 & 0 & -1 & -2 \end{pmatrix}  has determinant 2?
1) -4 2) 1 3) 0 4) 2 5) 3
```

Find the solution of the linear system

 $\begin{array}{l} x_1-2\;x_2+2\;x_3-2\;x_4-x_5-4\;x_6==5\\ -x_1-2\;x_2+3\;x_3+5\;x_4-3\;x_6==-2\\ -x_2+x_3+4\;x_4-x_5-5\;x_6==-4\\ -4\;x_1+x_2+x_3+10\;x_4+3\;x_5+7\;x_6==-10 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

In a livestock farm, animal feed from several companies is used.

Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	9K	19K	6K
Feed of company 2	6K	13K	4K
Feed of company 3	8K	11K	6K
Feed of company 4	13K	24K	9К

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
83K	143K	59K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 4 to be equal to 1.

1) Feed 1=?, Feed 2=?, Feed 3=2, Feed 4=?

2) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

3) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

4) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?

5) Feed 1=?, Feed 2=?, Feed 3=4, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 0 & -1 & 0 & -1 \\ 0 & 2 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & -2 & 1 & 0 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -9 & 7 & -11 \\ 0 & ? & -3 & 4 \\ 0 & 2 & ? & 4 \\ 0 & 1 & -1 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & -1 & -2 & 1 \\ -2 & ? & 2 & -1 \\ -2 & 2 & ? & -1 \\ 1 & -2 & -1 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & 2 & 3 & 1 \\ 1 & ? & 2 & 0 \\ 0 & 0 & ? & 0 \\ -2 & -1 & -2 & ? \end{pmatrix}$$
4)
$$\begin{pmatrix} ? & -1 & 0 & -1 \\ 0 & ? & 0 & 0 \\ 1 & 0 & ? & 0 \\ 1 & 1 & 0 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & -1 & 1 & -1 \\ 2 & ? & 2 & -3 \\ 0 & -1 & ? & -1 \\ -1 & 0 & 0 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & -1 & 2 & -3 \\ -4 & ? & -5 & 6 \\ 2 & -1 & ? & -5 \\ 5 & -4 & 5 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & -1 & 4 & 0 \\ 1 & ? & 2 & -1 \\ 1 & 0 & ? & 0 \\ 0 & 0 & -1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-2 0 1 1), (0 -1 -1 2), (-2 2 -1 1), are independent? 1) 1 2) 2 3) 3

Exercise 3

Check whether the vector (n-tuple) (-4 -9 -8) is a linear combination of the vectors (-1 -2 2), (0 1 -2), (-2 -3 4), (-2 -4 4), (-1 -1 2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 12 & -5 \\ -7 & 3 \end{pmatrix} \cdot X \cdot \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 34 & -17 \\ -20 & 10 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * \\ -2 & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 1 & 2 & 1 & -1 \\ 1 & a & -2 & -1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & -1 & -2 \end{pmatrix} \text{ has determinant } -13?$ 1) -1 2) -2 3) 2 4) 1 5) 5

Find the solution of the linear system

 $\begin{array}{l} x_1 + 12 \; x_3 - 5 \; x_4 == -2 \\ x_1 - 3 \; x_2 - 7 \; x_3 + 3 \; x_4 == 2 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1) $\begin{pmatrix} -1\\ ?\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ -10\\ ? \end{pmatrix} , \begin{pmatrix} ?\\ ?\\ 18\\ ? \end{pmatrix} \rangle$ 2) $\begin{pmatrix} 2\\ ?\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ -5\\ ?\\ ?\\ ? \end{pmatrix} , \begin{pmatrix} ?\\ ?\\ 17\\ ?\\ ?\\ ? \end{pmatrix} \rangle$ 3) $\begin{pmatrix} ?\\ -9\\ ?\\ ?\\ ?\\ ?\\ -9 \end{pmatrix} + \langle \begin{pmatrix} ?\\ 1\\ ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} , \begin{pmatrix} ?\\ -1\\ ?\\ ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} , \begin{pmatrix} ?\\ ?\\ -9\\ ?\\ ?\\ ?\\ ?\\ ?\\ 15\\ ? \end{pmatrix} \rangle$ 4) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ -8 \end{pmatrix}$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
animal flours	өк	4K	1K	3К
vegetable flours	өк	2К	1K	2K
fish flours	1K	1K	өк	1K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
29K	18K	9K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the

feed, the total number of sacks for every animal has to be equal to 13.

- 1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1
- 2) Feed 1=?, Feed 2=?, Feed 3=1, Feed 4=?
- 3) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=3
- 4) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?
- 5) Feed 1=?, Feed 2=?, Feed 3=2, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 0 & -2 & -1 & 4 \\ -1 & 0 & -1 & 1 \\ 1 & 2 & -1 & -2 \\ 0 & -1 & 1 & 1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -4 & 1 & 2 \\ 1 & ? & 1 & 1 \\ 1 & -2 & ? & 0 \\ 0 & 1 & 0 & ? \end{pmatrix}$$
 2)
$$\begin{pmatrix} ? & -2 & -1 & -1 \\ -1 & ? & 0 & 1 \\ 0 & 2 & ? & 0 \\ 0 & 1 & 1 & ? \end{pmatrix}$$
 3)
$$\begin{pmatrix} ? & -2 & 0 & -3 \\ 0 & ? & 0 & 1 \\ 2 & -3 & ? & -3 \\ -1 & 0 & 0 & ? \end{pmatrix}$$
 4)

$$\begin{pmatrix} ? & -2 & 1 & 0 \\ 0 & 1 & 1 & ? \end{pmatrix}$$
 5)
$$\begin{pmatrix} ? & -2 & 2 & 3 \\ -4 & ? & -2 & -5 \\ 0 & 0 & ? & -1 \\ -1 & 1 & -1 & ? \end{pmatrix}$$
 6)
$$\begin{pmatrix} ? & -1 & -2 & 1 \\ 0 & ? & 1 & -2 \\ 0 & 1 & ? & -1 \\ 0 & 1 & 1 & ? \end{pmatrix}$$
 7)
$$\begin{pmatrix} ? & -1 & -1 & -1 \\ 2 & ? & -1 & -3 \\ -1 & 1 & ? & 1 \\ 0 & 1 & 0 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-2 1 1 0 -2), (1 -2 1 -2 1), (1 -1 2 -1 1)
, (-4 2 2 0 -4), (2 2 -2 0 0), (-3 3 0 2 -3),
are independent?
1) 1 2) 2 3) 3 4) 4 5) 5 6) 6

Exercise 3

Check whether the vector (n-tuple) (2 -4 2 -4) is a linear combination of the vectors (1 -2 1 -2), (0 0 0 -3), (0 0 0 3), (1 -2 1 1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix} \cdot X + \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -2 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 3 \\ 1 & 0 & 1 \\ -2 & 1 & -2 \end{pmatrix}$ $1) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & -1 \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\left(\begin{array}{ccccc} -2 & 1 & 1 & 0 \\ a & -1 & 1 & 0 \\ 2 & -2 & -1 & 0 \\ 2 & 0 & 1 & -1 \end{array}\right) \ \ \text{has determinant 4?} \\ 1) \ \ -5 \ \ 2) \ -3 \ \ 3) \ 2 \ \ 4) \ \ 3 \ \ 5) \ 0 \\$

Find the solution of the linear system

 $\begin{array}{l} 5 \, x_1 - 4 \, x_2 - 2 \, x_3 - 7 \, x_4 == 5 \\ -4 \, x_2 - x_3 - 7 \, x_4 == -4 \\ 2 \, x_1 - x_2 - 2 \, x_4 == 3 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

 \rangle

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	2K	2K	3K
Feed of company 2	өк	1K	1K
Feed of company 3	өк	4K	4K
Feed of company 4	3K	3K	5K

The experts of the livestock farm determined that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
23K	28K	42K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 14.

- 1) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?
- 2) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?
- 3) Feed 1=4, Feed 2=?, Feed 3=?, Feed 4=?
- 4) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?
- 5) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=4

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -4 & -5 & 6 \\ 0 & ? & -1 & 2 \\ 0 & 1 & ? & -1 \\ 2 & -4 & -4 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & 1 & 1 & 1 \\ 1 & ? & 0 & 1 \\ 0 & 0 & ? & 0 \\ 1 & 0 & 1 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -2 & -6 & 12 \\ -4 & ? & 7 & -16 \\ -1 & 1 & ? & -5 \\ -1 & 1 & 4 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & -2 & 5 & 2 \\ 8 & ? & 12 & 5 \\ -9 & 5 & ? & -6 \\ 11 & -6 & 17 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & -1 & -2 & 2 \\ 0 & ? & 1 & -1 \\ 1 & -1 & ? & -1 \\ -1 & 2 & 1 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & -1 & -1 & 1 \\ 1 & ? & -1 & 1 \\ 0 & 0 & ? & -1 \\ -1 & 1 & 1 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & -1 & 9 & 4 \\ -7 & ? & -13 & -6 \\ -2 & 1 & ? & -2 \\ 3 & -1 & 6 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(2 -1 -1 0 0), (-1 2 -1 -2 1), (-1 2 -2 -1 0), (0 -1 -2 0 -1), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (4 -1 -6 1) is a linear combination of the vectors (2 -1 -2 1), (1 1 -4 0), (-3 3 0 -2), (-1 2 -2 -1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} X - \begin{pmatrix} 1 & -2 & -2 \\ 0 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} -1 & -2 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$ $1) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ 1 & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

```
 \begin{pmatrix} 1 & 0 & 0 & -1 \\ 2 & 1 & a & 2 \\ 0 & -2 & -1 & 1 \\ 0 & 3 & 1 & -1 \end{pmatrix}  has determinant 5?
1) 5 2) 1 3) -5 4) 3 5) -2
```

Find the solution of the linear system

 $\begin{array}{l} -6 \; x_1 + 10 \; x_2 + x_3 == 7 \\ 4 \; x_1 - 7 \; x_2 - x_3 == 0 \\ 4 \; x_1 - 6 \; x_2 - x_3 == 3 \\ -3 \; x_1 + 5 \; x_2 + x_3 == -5 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} ?\\ -1\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ -1\\ ? \end{pmatrix} \rangle$$

2) $\begin{pmatrix} -7\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ 4\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ 8 \end{pmatrix} \rangle$
3) $\begin{pmatrix} ?\\ ?\\ -14 \end{pmatrix}$
4) $\begin{pmatrix} ?\\ ?\\ -16 \end{pmatrix}$
5) $\begin{pmatrix} ?\\ ?\\ -17 \end{pmatrix}$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	9K	4K	6K
Feed of company 2	15K	7K	10K
Feed of company 3	5K	2K	4К
Feed of company 4	1K	өк	1K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
125K	55K	85K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 1 to be equal to 5.

1) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=5

3) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=3

4) Feed 1=3, Feed 2=?, Feed 3=?, Feed 4=?

5) Feed 1=?, Feed 2=3, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix $\begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 2\\ -6\\ -4\\ ? \end{array} \right) 3) \begin{pmatrix} ? & -2 & -2 & -3\\ 1 & ? & -2 & -2\\ 1 & -4 & ? & -1\\ -1 & 1 & 1 & ? \end{pmatrix} 4) $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$

Exercise 2

How many of the vectors (n-tuples)

(-2 -2 -1 2 1), (2 0 -2 1 -1), (-2 1 0 -1 0), (-2 2 2 0 2), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (-2 -8 -3 -5) is a linear combination of the vectors $(-3 -2 \ 0 \ -2)$, $(1 \ -2 \ -4 \ 0)$, $(-1 \ -2 \ -2 \ -1)$, $(-2 \ -4 \ -4 \ -2)$, $(2 \ 0 \ -2 \ 1)$, 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 4 & 2 & 7 \end{pmatrix} \cdot X - \begin{pmatrix} 0 & -1 & 2 \\ 1 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 9 & 6 & 2 \end{pmatrix}$ $1) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & -1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & * \\ -1 & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\left(\begin{array}{ccccc} 1 & 0 & 0 & 1 \\ 2 & 0 & 1 & 2 \\ -2 & 1 & 0 & 0 \\ a & 1 & 0 & 1 \end{array} \right) \ \ \text{has determinant 1?} \\ 1) \ \ -4 \ \ 2) \ 5 \ \ 3) \ \ 3 \ \ 4) \ 0 \ \ 5) \ \ -3 \ \ \\$

Find the solution of the linear system

 $\begin{array}{l} 6 \, x_1 - 3 \, x_2 + 5 \, x_3 - 4 \, x_4 - 5 \, x_5 == -4 \\ x_1 + x_3 + 5 \, x_4 + 4 \, x_5 == 5 \\ 2 \, x_1 - x_2 + 2 \, x_3 - x_4 + 3 \, x_5 == -5 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
animal flours	7K	7K	1K	2K
vegetable flours	6K	6K	1K	2K
fish flours	15K	15K	3K	7K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
67K	58K	147K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 2 to be equal to 5.

1) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

3) Feed 1=?, Feed 2=?, Feed 3=2, Feed 4=?

4) Feed 1=?, Feed 2=2, Feed 3=?, Feed 4=?

5) Feed 1=?, Feed 2=?, Feed 3=1, Feed 4=?

Exercise 1

```
Compute the inverse of the matrix \begin{pmatrix} 1 & 0 & -1 & 1 \\ 3 & 1 & -3 & 3 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}

1) \begin{pmatrix} ? & -5 & -7 & 2 \\ 0 & ? & -3 & 1 \\ 0 & 0 & ? & 1 \\ 0 & -3 & -4 & ? \end{pmatrix}
2) \begin{pmatrix} ? & -3 & 2 & -1 \\ 1 & ? & 3 & -1 \\ 0 & -1 & ? & -1 \\ 1 & -5 & 5 & ? \end{pmatrix}
3) \begin{pmatrix} ? & -1 & -1 & 1 \\ -2 & ? & 2 & -2 \\ -1 & 2 & ? & -2 \\ -1 & -1 & -1 & ? \end{pmatrix}
4)

\begin{pmatrix} ? & 0 & 1 & -1 \\ -3 & ? & 0 & 0 \\ -1 & 0 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}
5) \begin{pmatrix} ? & -1 & 0 & 1 \\ 1 & ? & 0 & 0 \\ 0 & 0 & ? & 0 \\ -1 & -2 & -1 & ? \end{pmatrix}
6) \begin{pmatrix} ? & -1 & 1 & -3 \\ -1 & ? & 0 & -1 \\ 0 & -1 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}
7) \begin{pmatrix} ? & 0 & -1 & -1 \\ 2 & ? & 2 & 0 \\ 1 & 0 & ? & 0 \\ 0 & -1 & 3 & ? \end{pmatrix}
```

Exercise 2

How many of the vectors (n-tuples)

```
(0 -1 -2 -1), (-1 -1 0 -1), (0 2 2 0),
are independent?
1) 1 2) 2 3) 3
```

Exercise 3

Check whether the vector $(n\mbox{-tuple})$ (5 7 5) is a linear combination of the vectors

(022), (044), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} X - \begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 4 & -1 \\ -3 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix}$ $1) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 2 & 0 & 2 & 1 \\ -1 & a & 1 & 1 \\ 1 & 0 & 2 & 0 \\ -1 & 1 & -1 & -1 \end{pmatrix}$ has determinant -9? 1) 4 2) -4 3) 2 4) -5 5) 0

Find the solution of the linear system

 $\begin{array}{l} 2 \; x_1 + 5 \; x_2 + 3 \; x_3 + 4 \; x_4 - x_5 == 3 \\ -4 \; x_1 - 7 \; x_2 + 2 \; x_3 - 7 \; x_4 + 2 \; x_5 == -8 \\ -2 \; x_1 - 2 \; x_2 + 5 \; x_3 - 3 \; x_4 + x_5 == -5 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

In a livestock farm, animal feed from several companies is used.

Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	9K	17K	24K
Feed of company 2	ЗК	4K	9K
Feed of company 3	7K	13K	19K
Feed of company 4	6K	11K	16K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
77K	140K	209K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2

3) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

4) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

5) Feed 1=?, Feed 2=?, Feed 3=3, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ -1 & 1 & 2 & -1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & -3 & 1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -4 & 3 & -1 \\ 1 & ? & 2 & -1 \\ 1 & -3 & ? & -1 \\ 0 & 2 & -3 & ? \end{pmatrix}$$
 2)
$$\begin{pmatrix} ? & -2 & -1 & 1 \\ -1 & ? & 0 & 2 \\ 0 & -1 & ? & 2 \\ 2 & -3 & -2 & ? \end{pmatrix}$$
 3)
$$\begin{pmatrix} ? & -2 & 5 & 2 \\ 3 & ? & 4 & 2 \\ 2 & -1 & ? & 1 \\ 3 & -2 & 5 & ? \end{pmatrix}$$
 4)

$$\begin{pmatrix} ? & -2 & 1 & 2 \\ 1 & ? & -1 & -1 \\ -3 & -5 & ? & 4 \\ 0 & 0 & 0 & ? \end{pmatrix}$$
 5)
$$\begin{pmatrix} ? & -2 & 3 & 4 \\ -1 & ? & -2 & -3 \\ -3 & 3 & ? & 0 \\ 2 & -2 & 0 & ? \end{pmatrix}$$
 6)
$$\begin{pmatrix} ? & -1 & -1 & -1 \\ -1 & ? & 2 & 0 \\ 1 & -1 & ? & 0 \\ 1 & 0 & 0 & ? \end{pmatrix}$$
 7)
$$\begin{pmatrix} ? & -1 & 0 & -2 \\ 1 & ? & 0 & 0 \\ 1 & -1 & ? & -1 \\ 1 & 0 & 0 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(2 -2 0 -1), (-1 2 0 1), (0 1 2 -2), are independent? 1) 1 2) 2 3) 3

Exercise 3

Check whether the vector $(n\mbox{-tuple})$ (0 9 0) is a linear combination of the vectors

(0 -2 0), (0 -1 0), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \cdot X - \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}$ $1) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 1 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 2 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -1 & -1 & 0 & -2 \\ 0 & -1 & 1 & 0 \\ 0 & -2 & -1 & -1 \\ 1 & a & 0 & -1 \end{pmatrix}$ has determinant 11? 1) 3 2) 4 3) -4 4) -3 5) 0

Find the solution of the linear system

 $\begin{array}{l} 5 \,\, x_1 \, - \, 2 \,\, x_2 \, + \, 2 \,\, x_3 \, - \, 2 \,\, x_4 \, - \, 3 \,\, x_5 \, = \, 1 \\ 2 \,\, x_1 \, - \, 4 \,\, x_3 \, + \, 3 \,\, x_4 \, + \, 4 \,\, x_5 \, = \, 4 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

 \rangle

Every company pr proportions as v	rm, animal feed from s roduces feed combining we can see in the tabl ery component that inc	different types of f e below which indicat	lour in different es the amount of	
animal flours vegetable flours fish flours	Feed of company 1 2K 4K 3K	Feed of company 2 ØK 2K ØK	Feed of company 3 1K 3K 2K	Feed of compa 1K 2K 2K
•	e livestock farm deter each animal needs the		on:	
	egetable flours fig 7K 12P	sh flours K		
recommended cor	every company are nec mposition taking into l number of sacks for	account that, to prop	•	
1) Feed 1=?, Feed	2=0, Feed 3=?, Feed 4	!=?		
2) Feed 1=?, Feed	2=1, Feed 3=?, Feed 4	!=?		
3) Feed 1=?, Feed	2=5, Feed 3=?, Feed 4	!= ?		
4) Feed 1=?, Feed	2=?, Feed 3=0, Feed 4	!= ?		

5) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 3 & 4 & 4 & -1 \\ 2 & 3 & 3 & -1 \\ -1 & -1 & 1 & -1 \\ -2 & -3 & -2 & 1 \end{pmatrix}$$
.
1) $\begin{pmatrix} ? & -7 & 1 & -2 \\ -3 & ? & -1 & 1 \\ 0 & 1 & ? & 1 \\ -1 & 3 & -1 & ? \end{pmatrix}$ 2) $\begin{pmatrix} ? & -1 & 1 & 0 \\ -5 & ? & -2 & 0 \\ 4 & 0 & ? & 0 \\ -2 & 0 & 0 & ? \end{pmatrix}$ 3) $\begin{pmatrix} ? & -1 & 1 & 2 \\ -1 & ? & -1 & -1 \\ 1 & 0 & ? & 0 \\ -2 & 0 & 0 & ? \end{pmatrix}$ 4)
 $\begin{pmatrix} ? & -1 & 1 & 2 \\ 0 & ? & -1 & -1 \\ -1 & 2 & ? & 0 \\ -1 & 1 & 0 & ? \end{pmatrix}$ 5) $\begin{pmatrix} ? & 0 & -2 & 3 \\ 2 & ? & -2 & 0 \\ 1 & 0 & ? & 1 \\ 5 & 0 & -3 & ? \end{pmatrix}$ 6) $\begin{pmatrix} ? & 0 & 0 & -1 \\ -5 & ? & -3 & -4 \\ -3 & -1 & ? & -2 \\ 6 & 2 & 4 & ? \end{pmatrix}$ 7) $\begin{pmatrix} ? & 0 & 0 & -1 \\ -2 & ? & 0 & 1 \\ 1 & -2 & ? & -1 \\ -3 & 3 & -1 & ? \end{pmatrix}$

Exercise 2

How many of the vectors (n-tuples)

(0 2 -2 0), (-4 -4 -2 0), (-2 -2 -1 0), (-2 -1 0 -2), (0 -1 2 1), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (-4 -3 -4) is a linear combination of the vectors (1 2 1), (1 1 1), (0 -1 0), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}^{-1} \cdot X - \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -4 & -2 \\ 1 & 0 \end{pmatrix}$ 1) $\begin{pmatrix} -2 & * \\ * & * \end{pmatrix}$ 2) $\begin{pmatrix} 0 & * \\ * & * \end{pmatrix}$ 3) $\begin{pmatrix} -1 & * \\ * & * \end{pmatrix}$ 4) $\begin{pmatrix} * & -2 \\ * & * \end{pmatrix}$ 5) $\begin{pmatrix} * & -1 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 2 & 0 & 1 & -1 \\ 2 & 1 & 1 & -1 \\ 2 & 0 & 1 & 0 \\ a & -1 & -2 & 1 \end{pmatrix}$ has determinant 4? 1) -5 2) 0 3) 1 4) 3 5) -4

Find the solution of the linear system

 $\begin{array}{l} -2 \; x_1 + 3 \; x_2 - x_3 - 2 \; x_4 == 1 \\ 3 \; x_1 - 8 \; x_2 + 3 \; x_3 + 5 \; x_4 == 1 \\ -x_1 - 2 \; x_2 + x_3 + x_4 == 3 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

 \rangle

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1)	$\begin{pmatrix} 2\\ 2\\ 2\\ -7 \end{pmatrix} + \left\langle \begin{pmatrix} 2\\ 2\\ 6\\ 2 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ 4\\ 2 \end{pmatrix} \right\rangle$
2)	$\begin{pmatrix} ? \\ ? \\ ? \\ -9 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ 2 \end{pmatrix} \rangle$
3)	$ \begin{pmatrix} ? \\ ? \\ 7 \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ -3 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 1 \\ ? \end{pmatrix} \rangle $
4)	$\begin{pmatrix} 2\\ 2\\ 2\\ -6 \end{pmatrix} + \left\langle \begin{pmatrix} 8\\ 2\\ 2\\ 2\\ 2 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ -3\\ 2\\ 2 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ -3\\ -9 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ 2\\ -9\\ -9 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ 2\\ -4\\ 2\\ 2 \end{pmatrix}$
	$\begin{pmatrix} -1\\ ?\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ 3\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ 3\\ 3 \end{pmatrix} \rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
animal flours	4K	10K	45K	45K
vegetable flours	ØК	1K	1K	3K
fish flours	1K	ЗК	12K	13K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
167K	7K	46K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 8.

- 1) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?
- 2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1
- 3) Feed 1=?, Feed 2=1, Feed 3=?, Feed 4=?
- 4) Feed 1=?, Feed 2=?, Feed 3=1, Feed 4=?
- 5) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} -1 & -1 & 2 & -1 \\ 1 & 0 & -1 & 0 \\ -1 & 1 & -1 & 3 \\ -3 & -1 & 2 & 2 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -2 & 0 & 0 \\ 4 & ? & 2 & -1 \\ 1 & -3 & ? & -1 \\ 2 & -3 & 1 & ? \end{pmatrix}$$

2)
$$\begin{pmatrix} ? & 3 & 3 & -2 \\ 1 & ? & 1 & -1 \\ 5 & 2 & ? & -2 \\ 3 & 2 & 2 & ? \end{pmatrix}$$

3)
$$\begin{pmatrix} ? & -1 & -3 & -1 \\ 0 & ? & 1 & 0 \\ -4 & 1 & ? & 1 \\ 0 & -1 & -1 & ? \end{pmatrix}$$

4)
$$\begin{pmatrix} ? & -1 & 1 & -1 \\ 0 & ? & -1 & 2 \\ -2 & -1 & ? & -1 \\ -1 & -1 & 0 & ? \end{pmatrix}$$

5)
$$\begin{pmatrix} ? & -1 & 1 & 0 \\ 0 & ? & -1 & -1 \\ 0 & -5 & ? & 4 \\ 1 & 0 & 0 & ? \end{pmatrix}$$

6)
$$\begin{pmatrix} ? & -1 & 11 & 3 \\ 2 & ? & -3 & -4 \\ 1 & 0 & ? & 1 \\ 0 & 0 & 2 & ? \end{pmatrix}$$

7)
$$\begin{pmatrix} ? & 0 & -1 & -1 \\ 0 & ? & 1 & 0 \\ -1 & -1 & ? & 1 \\ 0 & 2 & 1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-2 -1 1 0 1), (2 2 -2 1 1), (0 0 1 2 -1), (-1 0 1 2 -2), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (4 -4 -1 9) is a linear combination of the vectors (-4 -2 2 0), (-2 -1 1 0), (1 -1 0 1), (0 1 2 -1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 1 \end{pmatrix} \cdot X + \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -1 \\ -1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 5 & 1 & -3 \\ -4 & 0 & 4 \end{pmatrix}$ $1) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & 1 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ -2 & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 1 & 0 & 0 & -1 \\ a & 1 & 2 & 0 \\ -2 & 1 & 0 & 1 \\ 1 & -2 & 1 & 0 \end{pmatrix}$ has determinant 3? 1) 0 2) -5 3) 5 4) 4 5) -2

Find the solution of the linear system

 $\begin{array}{l} 3 \ x_1 - x_3 == -4 \\ 8 \ x_1 - 5 \ x_2 - 2 \ x_3 == 1 \\ -11 \ x_1 + 7 \ x_2 + 3 \ x_3 == 1 \\ -4 \ x_1 + 2 \ x_2 + x_3 == 0 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

```
1) \begin{pmatrix} ?\\ ?\\ 10 \end{pmatrix}

2) \begin{pmatrix} 1\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} -7\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ -2\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} 1\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -2 \end{pmatrix} \rangle

3) \begin{pmatrix} ?\\ -7\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} 1\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ 7\\ ?\\ ? \end{pmatrix} \rangle

4) \begin{pmatrix} 3\\ ?\\ ?\\ 8 \end{pmatrix}
```

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	6K	13K	4K
Feed of company 2	7K	15K	4K
Feed of company 3	7K	16K	5K
Feed of company 4	4K	9К	ЗК

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
66K	145K	44K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

3) Feed 1=3, Feed 2=?, Feed 3=?, Feed 4=?

- 4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2
- 5) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 0 & -1 & -1 & 0 \\ 1 & 4 & 3 & -1 \\ 0 & 0 & 1 & 0 \\ -1 & -4 & -6 & 2 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & 2 & 4 & 1 \\ -1 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ 0 & 1 & 3 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & -2 & -5 & -2 \\ 1 & ? & -2 & -1 \\ 0 & -1 & ? & 0 \\ -1 & 3 & 2 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -2 & 0 & 0 \\ 0 & ? & -1 & -1 \\ 1 & -1 & ? & 0 \\ 0 & -1 & 1 & ? \end{pmatrix}$$
4)
$$\begin{pmatrix} ? & -1 & 0 & 0 \\ -3 & ? & 0 & 1 \\ -3 & 1 & ? & 1 \\ 0 & 0 & 0 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & 0 & -1 & 2 \\ -2 & ? & 2 & -2 \\ 0 & 0 & ? & 1 \\ 0 & 0 & 0 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & 0 & 0 & -1 \\ -1 & ? & -1 & 1 \\ -1 & 0 & ? & 2 \\ -1 & 0 & -1 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & 0 & 0 & 1 \\ -1 & ? & -2 & -4 \\ -1 & 1 & ? & 0 \\ 1 & -3 & 3 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(2 2 -2 -1 -2), (2 2 2 -1 1), (2 1 -1 -1 -2), (-3 -3 -4 1 -3), (-1 -1 -2 0 -2), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (2 2 -5 8) is a linear combination of the vectors (1 0 0 2), (1 0 2 2), (-2 2 1 0), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

$$\begin{pmatrix} \mathbf{X} + \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} \\ -2 & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1} & -\mathbf{1} \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} -\mathbf{1} & -2 & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{2} \end{pmatrix} = \begin{pmatrix} -2 & -3 & \mathbf{1} \\ 4 & 5 & \mathbf{0} \\ -2 & \mathbf{0} & -4 \end{pmatrix}$$

$$\mathbf{1}) \quad \begin{pmatrix} \mathbf{0} & \ast & \ast \\ \ast & \ast & \ast \\ \ast & \ast & \ast \end{pmatrix} \quad \mathbf{2}) \quad \begin{pmatrix} -\mathbf{1} & \ast & \ast \\ \ast & \ast & \ast \\ \ast & \ast & \ast \end{pmatrix} \quad \mathbf{3}) \quad \begin{pmatrix} \mathbf{2} & \ast & \ast \\ \ast & \ast & \ast \\ \ast & \ast & \ast \end{pmatrix} \quad \mathbf{4}) \quad \begin{pmatrix} \ast & \ast & \mathbf{0} \\ \ast & \ast & \ast \\ \ast & \ast & \ast \end{pmatrix} \quad \mathbf{5}) \quad \begin{pmatrix} \ast & \ast & \mathbf{1} \\ \ast & \ast & \ast \\ \ast & \ast & \ast \end{pmatrix}$$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\left(\begin{array}{cccccc} 1 & a & -2 & 2 \\ 0 & 1 & -1 & -1 \\ 1 & -2 & 1 & 1 \\ -2 & -1 & 0 & 1 \end{array}\right) \text{ has determinant } -14? \\ 1) & -1 & 2) & 0 & 3) & 1 & 4) & 3 & 5) & -3 \\ \end{array}$

Find the solution of the linear system

 $\begin{array}{l} 7 \ x_1 + x_3 + x_4 == -6 \\ x_1 + 7 \ x_2 + 3 \ x_3 + 9 \ x_4 == 4 \\ -x_1 + 2 \ x_2 + x_3 + 3 \ x_4 == 0 \\ -4 \ x_1 - 8 \ x_2 - 4 \ x_3 - 11 \ x_4 == -1 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} ?\\ ?\\ -3\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ -13\\ ? \end{pmatrix} \rangle$$

2) $\begin{pmatrix} ?\\ -2\\ ?\\ ? \end{pmatrix}$
3) $\begin{pmatrix} ?\\ 4\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ 8 \end{pmatrix} \rangle$
4) $\begin{pmatrix} ?\\ ?\\ ?\\ -2 \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -4 \end{pmatrix}, \begin{pmatrix} 2\\ ?\\ ?\\ ? \end{pmatrix} \rangle$
5) $\begin{pmatrix} ?\\ 2\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ -4 \end{pmatrix} \rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	4K	ØK	ЗК
Feed of company 2	10K	2К	5K
Feed of company 3	4K	1K	2K
Feed of company 4	7K	1K	4K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
44K	8K	24K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 4 to be equal to 4.

- 1) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?
- 2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1
- 3) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2
- 4) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?
- 5) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 1 & 2 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -5 & 0 & -4 \\ 0 & ? & 1 & 0 \\ -1 & 3 & ? & 1 \\ 2 & -2 & 1 & ? \end{pmatrix}$$

2)
$$\begin{pmatrix} ? & -5 & 1 & 0 \\ -1 & ? & -1 & -1 \\ -3 & 6 & ? & -1 \\ -1 & 1 & 0 & ? \end{pmatrix}$$

3)
$$\begin{pmatrix} ? & -3 & 1 & 2 \\ 1 & ? & 0 & 1 \\ 0 & 1 & ? & -1 \\ 0 & -1 & 0 & ? \end{pmatrix}$$

4)
$$\begin{pmatrix} ? & -1 & -1 & 0 \\ 1 & ? & -2 & 0 \\ 0 & 1 & ? & -1 \\ -1 & 1 & 1 & ? \end{pmatrix}$$

6)
$$\begin{pmatrix} ? & -1 & 0 & -1 \\ 1 & ? & -2 & 0 \\ 0 & 1 & ? & -1 \\ -2 & -1 & 1 & ? \end{pmatrix}$$

7)
$$\begin{pmatrix} ? & -1 & 1 & 0 \\ 0 & ? & -1 & 1 \\ 0 & 0 & ? & 1 \\ 1 & 3 & -2 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(1 2 -1 -2 0), (0 1 1 1 -1), (2 -2 0 0 -2)
, (1 1 -2 -1 -1), (-2 3 1 1 1), (1 2 0 2 -1),
are independent?
1) 1 2) 2 3) 3 4) 4 5) 5 6) 6

Exercise 3

Check whether the vector (n-tuple) (4 1 4 9) is a linear combination of the vectors (2 1 -2 -2), (4 2 -4 -4), (2 2 -2 0), (0 1 0 2),

1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

```
 \begin{pmatrix} X + \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & -2 \\ 0 & 0 & 1 \\ -1 & -1 & 4 \end{pmatrix} 
 1) \quad \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix}
```

Exercise 5

Compute the value for parameter a in such a way that the matrix

Find the solution of the linear system

 $\begin{array}{l} 2 \, x_1 + x_2 - x_3 - 3 \, x_4 == -5 \\ x_2 - x_3 + 7 \, x_4 == 3 \\ 2 \, x_1 + 2 \, x_2 - 3 \, x_3 - x_4 == 0 \\ - x_1 - x_2 + 2 \, x_3 + 3 \, x_4 == -1 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	12K	2К	7K
Feed of company 2	49K	8K	29K
Feed of company 3	32K	5K	19K
Feed of company 4	24K	4K	14K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
257K	41K	152K

How many sacks of every company are necessary to reach the

recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9.

- 1) Feed 1=?, Feed 2=?, Feed 3=3, Feed 4=?
- 2) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?
- 3) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?
- 4) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?
- 5) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

```
Compute the inverse of the matrix \begin{pmatrix} 1 & 3 & 2 & 1 \\ 0 & 2 & 1 & 0 \\ 3 & 4 & 6 & 6 \\ 2 & 3 & 4 & 4 \end{pmatrix}.

1) \begin{pmatrix} ? & -7 & 9 & -3 \\ 1 & ? & 5 & -2 \\ -2 & -1 & ? & 0 \\ 0 & 2 & -2 & ? \end{pmatrix} 2) \begin{pmatrix} ? & -3 & -6 & -1 \\ 0 & ? & 2 & 0 \\ 0 & 0 & ? & -1 \\ 0 & 0 & 0 & ? \end{pmatrix} 3) \begin{pmatrix} ? & -2 & -1 & 7 \\ 0 & ? & 0 & 1 \\ 0 & -1 & ? & 2 \\ 0 & -1 & 0 & ? \end{pmatrix} 4)

\begin{pmatrix} ? & -2 & 1 & -2 \\ 0 & ? & -2 & 3 \\ 0 & 1 & ? & -6 \\ -1 & 0 & -3 & ? \end{pmatrix} 5) \begin{pmatrix} ? & -2 & 0 & 2 \\ 2 & ? & 0 & -1 \\ -2 & -1 & ? & 2 \\ 1 & 1 & 2 & ? \end{pmatrix} 6) \begin{pmatrix} ? & -2 & 1 & 3 \\ -1 & ? & 0 & 1 \\ 3 & 2 & ? & -2 \\ 0 & 0 & 0 & ? \end{pmatrix} 7) \begin{pmatrix} ? & -1 & -1 & -2 \\ -2 & ? & -1 & 2 \\ -2 & 1 & ? & 4 \\ -1 & -1 & -1 & ? \end{pmatrix}
```

Exercise 2

How many of the vectors (n-tuples)

(-2 2 1 2), (0 1 -1 0), (-1 -2 -2 -1), are independent? 1) 1 2) 2 3) 3

Exercise 3

Check whether the vector (n-tuple) (-5 2 6) is a linear combination of the vectors (1 -2 2), (2 -2 0), (1 0 -2), (-1 0 2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 7 & 4 \\ 5 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -1 & -1 & 0 & 2 \\ 0 & 1 & -1 & a \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ has determinant 4? 1) 0 2) 2 3) 1 4) -1 5) 5

Find the solution of the linear system

 $\begin{array}{r} -2 \, x_1 - 4 \, x_2 + 7 \, x_3 + 4 \, x_4 == -3 \\ -7 \, x_1 - 3 \, x_2 + 2 \, x_3 + x_4 == -8 \\ 5 \, x_1 - x_2 + 5 \, x_3 + 3 \, x_4 == 5 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} ?\\ ?\\ -4\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ -6 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ 8\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ 0\\ ?\\ ? \end{pmatrix} \rangle$$

2) $\begin{pmatrix} 1\\ ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ -48 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ 11\\ ? \end{pmatrix} \rangle$
3) $\begin{pmatrix} ?\\ ?\\ ?\\ 47 \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ -44 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -11 \end{pmatrix} \rangle$
4) $\begin{pmatrix} ?\\ ?\\ ?\\ 8 \end{pmatrix}$
5) $\begin{pmatrix} 0\\ ?\\ ?\\ ?\\ 8 \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ 26\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ -13 \end{pmatrix} \rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	2K	1K	2K
Feed of company 2	9K	5K	9K
Feed of company 3	9K	5K	10K
Feed of company 4	10K	5K	5K

The experts of the livestock farm determined that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
85K	45K	75K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 13.

- 1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2
- 2) Feed 1=?, Feed 2=?, Feed 3=1, Feed 4=?
- 3) Feed 1=?, Feed 2=?, Feed 3=4, Feed 4=?
- 4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=3
- 5) Feed 1=3, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix $\begin{pmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 0 & -1 \\ 1 & 0 & 2 & 0 \\ 1 & 1 & -1 & 2 \end{pmatrix}$.	
$ 1) \begin{pmatrix} ? & -2 & -1 & -2 \\ 1 & ? & 0 & 0 \\ -1 & 1 & ? & 1 \\ -2 & 1 & 1 & ? \end{pmatrix} 2) \begin{pmatrix} ? & -1 & -1 & -2 \\ 3 & ? & -2 & -4 \\ -2 & 1 & ? & 0 \\ -3 & 2 & 1 & ? \end{pmatrix} 3) \begin{pmatrix} ? & -1 & 0 & -3 \\ -1 & ? & 0 & 3 \\ 0 & -1 & ? & 0 \\ 1 & 0 & 0 & ? \end{pmatrix} 4$	•)
$-\begin{pmatrix} ? & -1 & 3 & 3\\ 2 & ? & 1 & 2\\ -1 & 0 & ? & -1\\ 5 & 1 & 4 & ? \end{pmatrix} 5) \begin{pmatrix} ? & 0 & -2 & -1\\ 1 & ? & 1 & 1\\ 2 & -1 & ? & 1\\ 2 & -1 & -1 & ? \end{pmatrix} 6) \begin{pmatrix} ? & 0 & -1 & -1\\ -1 & ? & 0 & 1\\ 1 & 2 & ? & -1\\ 0 & -2 & -1 & ? \end{pmatrix} 7) \left(\begin{pmatrix} 2 & 0 & -1 & -1\\ -1 & 2 & 0 & 1\\ 1 & 2 & 2 & -1\\ 0 & -2 & -1 & ? \end{pmatrix} \right)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Exercise 2

How many of the vectors (n-tuples)

(-1 0 1 -2 -1), (-3 0 2 -2 -2), (0 -2 2 0 1), (-1 -1 0 -1 -1), (2 0 -1 0 1), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (-7 2 -6 3) is a linear combination of the vectors (1 0 1 -1), (1 -1 0 2), (2 -1 2 -2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

$$\begin{pmatrix} X + \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \\ -1 & -3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & -2 \\ 0 & 0 & 0 \\ 1 & 8 & -5 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} * & 0 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & 2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & * \\ -2 & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ -1 & * & * \\ * & * & * \end{pmatrix}$$

Exercise 5

Compute the value for parameter a in such a way that the matrix

```
 \left(\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 0 & 1 & 0 \\ a & -2 & 1 & 2 \end{array}\right) \text{ has determinant 1?} \\ 1) \ 0 \ 2) \ 5 \ 3) \ -2 \ 4) \ -3 \ 5) \ 1 \\ \end{array}
```

Find the solution of the linear system

 $\begin{array}{l} -x_1 - x_2 == 7 \\ -2 \, x_1 + 3 \, x_2 - x_3 == -4 \\ x_1 - 2 \, x_2 + x_3 == 3 \\ x_1 - x_2 + x_3 == -1 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

```
1) \begin{pmatrix} ?\\ 1\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ -5 \end{pmatrix} \rangle

2) \begin{pmatrix} ?\\ -5\\ ? \end{pmatrix}

3) \begin{pmatrix} ?\\ -4\\ ? \end{pmatrix}

4) \begin{pmatrix} ?\\ 9\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ 1 \end{pmatrix}, \begin{pmatrix} ?\\ 5\\ ? \end{pmatrix} \rangle

5) \begin{pmatrix} -1\\ ?\\ ? \end{pmatrix}
```

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
animal flours	4K	11K	8K	8K
vegetable flours	4K	15K	10K	13K
fish flours	1K	5K	ЗК	5K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
75K	105K	36K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 8.

1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2

2) Feed 1=?, Feed 2=2, Feed 3=?, Feed 4=?

3) Feed 1=?, Feed 2=3, Feed 3=?, Feed 4=?

4) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

5) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 2 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & -1 & 2 & -1 \\ -2 & 0 & -1 & 1 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} ? & 0 & -1 & -1 \\ 0 & ? & 0 & 0 \\ -1 & 1 & ? & 2 \\ 1 & 1 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -4 & -4 & 3 \\ -1 & ? & 2 & -1 \\ 1 & -3 & ? & 2 \\ 0 & -1 & -1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -4 & -1 & -2 \\ -1 & ? & -1 & 1 \\ 0 & 4 & ? & 2 \\ 1 & -1 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & -7 & 4 \\ 1 & ? & 5 & -2 \\ 1 & 2 & ? & -3 \\ 0 & 1 & 2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 1 & ? & 1 & 1 \\ 1 & -1 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 2 \\ 1 & ? & -1 & -2 \\ 0 & 2 & ? & 0 \\ 0 & 1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ -5 & ? & 3 & 2 \\ 1 & -1 & ? & 0 \\ -3 & 1 & 1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-2 1 1 -1 -1), (2 1 -1 2 2), (0 -2 -1 2 0), (-1 0 2 -1 1), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (2 -3 -9 5) is a linear combination of the vectors (-1 -2 -1 0), (-2 -4 -2 0), (-2 -2 -1 -1), (1 1 -2 1), (1 0 0 1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X - \begin{pmatrix} 2 & -1 & 0 \\ 2 & -2 & 1 \\ 1 & -1 & 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} -3 & 1 & 4 \\ -4 & 2 & 2 \\ -2 & 1 & 1 \end{pmatrix}$ $1) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & -1 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ -2 & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -2 & 0 & 1 & 1 \\ -2 & -1 & 1 & a \\ 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 2 \end{pmatrix}$ has determinant 2? 1) 3 2) -4 3) 5 4) 1 5) 0

Find the solution of the linear system

 $\begin{array}{l} -x_1+x_3+4\ x_4=:4\\ 3\ x_1-2\ x_2-x_3+2\ x_4=:0\\ -x_1+2\ x_2-2\ x_4=:1\\ 2\ x_1+x_2-x_3+x_4=:4 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
animal flours	ЗК	1K	5K	2K
vegetable flours	2К	1K	өк	2K
fish flours	6K	2K	6K	5K

The experts of the livestock farm determined that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
45K	15K	72K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 13.

- 1) Feed 1=?, Feed 2=?, Feed 3=3, Feed 4=?
- 2) Feed 1=?, Feed 2=?, Feed 3=4, Feed 4=?
- 3) Feed 1=?, Feed 2=?, Feed 3=5, Feed 4=?
- 4) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?
- 5) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 3 & 0 & 2 \\ 0 & -3 & 1 & -1 \\ 2 & 3 & 0 & 3 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & 0 & 0 & -1 \\ 1 & ? & 0 & -1 \\ 0 & 2 & ? & -1 \\ -3 & -1 & 0 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & -3 & 1 & 1 \\ -1 & ? & 1 & 0 \\ -1 & -3 & ? & 2 \\ 1 & 2 & 0 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -3 & 3 & -1 \\ 0 & ? & -5 & 4 \\ 0 & -6 & ? & -3 \\ 0 & 1 & -1 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & -2 & 0 & 0 \\ 0 & ? & 1 & -1 \\ 0 & 1 & ? & -1 \\ 1 & -3 & 0 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & -1 & 0 & -1 \\ 1 & ? & 0 & 3 \\ -1 & -1 & ? & -1 \\ 0 & 0 & 1 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & -1 & 0 & 1 \\ 1 & ? & 1 & 0 \\ -1 & 0 & ? & -1 \\ 3 & -1 & -2 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & -1 & 1 & 0 \\ 1 & ? & 0 & 0 \\ -5 & 1 & ? & -1 \\ -3 & 1 & 3 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-2 -2 -1 1 0), (-1 0 -2 2 2), (1 2 -1 1 2), (1 -1 0 0 1), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) ($\mathsf{-3}$ $\mathsf{-3}$ $\mathsf{-7}$ $\mathsf{-9}$) is a linear combination of the vectors

(0 4 -2 0), (0 2 -1 0), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 0 & 1 & -1 \\ 2 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} X - \begin{pmatrix} -2 & 2 & 5 \\ -1 & 1 & 2 \\ -1 & 0 & 2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 7 & -1 & -9 \\ -4 & 1 & 5 \end{pmatrix}$ $1) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & * & * \\ 1 & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & * \\ 2 & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ * & * & -1 \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -2 & 1 & 0 & -2 \\ -1 & -1 & 0 & 3 \\ a & 0 & 2 & 1 \\ -1 & 2 & 1 & -3 \end{pmatrix}$ has determinant 13? 1) 0 2) 3 3) 4 4) -1 5) -4

Find the solution of the linear system

 $\begin{array}{r} -5\,x_1+2\,x_2+2\,x_3+2\,x_4+5\,x_5==-1\\ -12\,x_1+5\,x_2+4\,x_3-4\,x_4-4\,x_5==-3\\ x_1-x_2+x_3+15\,x_4+15\,x_5==-4\\ 4\,x_1-2\,x_2-x_3+5\,x_4-4\,x_5==-4 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

 \rangle

1)	$ \begin{pmatrix} \begin{array}{c} 2\\ 2\\ 8\\ 2\\ 2\\ \end{array} \end{pmatrix} + \left\langle \begin{array}{c} 2\\ -14\\ 2\\ 2\\ \end{array} \right\rangle, \begin{pmatrix} \begin{array}{c} 2\\ 2\\ -34\\ 2\\ 2\\ \end{array} \rangle $
2)	$ \begin{pmatrix} 11 \\ \mathbf{?} \\ \mathbf{?} \\ \mathbf{?} \\ \mathbf{?} \\ \mathbf{?} \\ \mathbf{?} \end{pmatrix} + \left\langle \begin{pmatrix} -4 \\ \mathbf{?} \\ \mathbf{?} \\ \mathbf{?} \\ \mathbf{?} \\ \mathbf{?} \\ \mathbf{?} \end{pmatrix} , \begin{pmatrix} \mathbf{?} \\ \mathbf{?} \\ -32 \\ \mathbf{?} \\ \mathbf{?} \\ \mathbf{?} \end{pmatrix} \right\rangle $
3)	$ \left(\begin{array}{c} 14\\ \mathbf{?}\\ \mathbf$
4)	$\left(\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left\langle \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left\langle \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)_{+} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
5)	$ \begin{pmatrix} ? \\ ? \\ ? \\ 4 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ -5 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 0 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\$

Feed of company 4

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

11K

5K

animal flours vegetable flours fish flours Feed of company 1 4K 10K 5K Feed of company 2 5K ЗK ЗK Feed of company 3 1K ЗK 1K

4K The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
27K	74K	33K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9.

1) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1

3) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=3

5) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & 3 & 0 & 0 \\ -3 & -2 & 2 & 1 \\ -4 & -3 & 3 & 1 \\ 2 & 3 & -1 & 0 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -2 & 2 & 4 \\ 6 & ? & -7 & -15 \\ 0 & 0 & ? & 1 \\ -2 & -3 & 3 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & -1 & -2 & 0 \\ 0 & ? & 1 & -1 \\ 2 & 2 & ? & -5 \\ -1 & -1 & 0 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -3 & 3 & 3 \\ 1 & ? & -1 & -1 \\ -1 & -3 & ? & 2 \\ -2 & 0 & 1 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & -1 & -1 & -1 \\ -1 & -3 & ? & 2 \\ -2 & 0 & 1 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & -1 & -1 & 1 \\ 1 & ? & -1 & 1 \\ 0 & -1 & ? & -1 \\ -2 & 1 & 2 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & 2 & 1 \\ -4 & 1 & ? & 0 \\ -3 & -1 & -3 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & -1 & 2 & 0 \\ -1 & ? & -1 & 1 \\ 0 & -1 & ? & 1 \\ 0 & -1 & 1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(0 0 2 2 0), (0 -2 -2 -1 -2), (-2 1 -2 1 1), (-2 1 -2 2 -1), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (8 - 8 0 - 1) is a linear combination of the vectors $(-4 \ 4 \ -2 \ -4)$, $(-2 \ 2 \ -1 \ -2)$, 1) Yes 2) No

Exercise 4

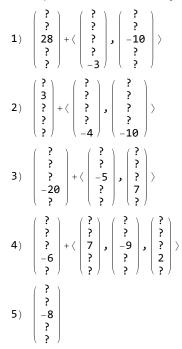
Solve for the matrix X in the following equation:

$$\begin{pmatrix} \mathbf{X} - \begin{pmatrix} \mathbf{2} & \mathbf{3} & \mathbf{3} \\ \mathbf{1} & \mathbf{2} & \mathbf{2} \\ \mathbf{3} & \mathbf{6} & \mathbf{7} \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{1} & -\mathbf{1} & \mathbf{2} \\ -\mathbf{2} & \mathbf{3} & -\mathbf{2} \\ -\mathbf{1} & \mathbf{1} & -\mathbf{1} \end{pmatrix}^{-1} = \begin{pmatrix} -\mathbf{1} & -\mathbf{4} & \mathbf{8} \\ \mathbf{1} & -\mathbf{3} & \mathbf{9} \\ -\mathbf{5} & -\mathbf{9} & \mathbf{16} \end{pmatrix}$$

$$\mathbf{1} \begin{pmatrix} \mathbf{-1} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \end{pmatrix} = \mathbf{2} \begin{pmatrix} \mathbf{*} & -\mathbf{1} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \end{pmatrix} = \mathbf{3} \begin{pmatrix} \mathbf{*} & \mathbf{*} & \mathbf{0} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \end{pmatrix} = \mathbf{4} \begin{pmatrix} \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{1} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \end{pmatrix} = \mathbf{5} \begin{pmatrix} \mathbf{*} & \mathbf{*} & \mathbf{*} \\ -\mathbf{1} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \end{pmatrix}$$

Exercise 5

Compute the value for parameter a in such a way that the matrix


```
 \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 1 & 1 & -2 & -2 \\ 2 & 1 & -1 & a \end{pmatrix}  has determinant 3?
1) 1 2) 0 3) 4 4) -5 5) 3
```

Find the solution of the linear system

 $\begin{array}{l} x_1 + 7 \; x_3 - 5 \; x_4 - 14 \; x_5 == -5 \\ -x_2 - 4 \; x_3 + 3 \; x_4 + 8 \; x_5 == 0 \\ 5 \; x_1 + 2 \; x_2 + 4 \; x_3 - 2 \; x_4 - 7 \; x_5 == 0 \\ 6 \; x_1 + 3 \; x_3 - x_4 - 5 \; x_5 == -5 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say, apply Gauss elimination technique selecting columns from right to left)

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal	flours vegetable	flours fish flours
Feed of company 1	5K	14K	22K
Feed of company 2	1K	ЗК	5K
Feed of company 3	11K	30K	47K
Feed of company 4	11K	31K	50K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
88K	243K	383K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

2) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?

3) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1

5) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & -2 & -1 & 1 \\ -1 & 2 & 2 & -2 \\ 0 & 0 & 0 & 1 \\ 1 & -1 & -1 & 2 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & 1 & -2 & 2 \\ -1 & ? & -1 & 1 \\ 1 & 1 & ? & 0 \\ 0 & 0 & 1 & ? \end{pmatrix}$$

2)
$$\begin{pmatrix} ? & -2 & -3 & 1 \\ 0 & ? & 0 & 1 \\ 0 & -1 & ? & 0 \\ 0 & -1 & -2 & ? \end{pmatrix}$$

3)
$$\begin{pmatrix} ? & -2 & 3 & -2 \\ -2 & ? & -1 & 1 \\ 3 & -1 & ? & -1 \\ -8 & 3 & -4 & ? \end{pmatrix}$$

4)

$$\begin{pmatrix} ? & -1 & 2 & 1 \\ -4 & ? & 4 & -2 \\ 0 & 0 & ? & 0 \\ 1 & 0 & -1 & ? \end{pmatrix}$$

5)
$$\begin{pmatrix} ? & -1 & 1 & -1 \\ -1 & ? & 0 & 0 \\ 1 & -2 & ? & -2 \\ 0 & 0 & 1 & ? \end{pmatrix}$$

6)
$$\begin{pmatrix} ? & -1 & 2 & 0 \\ -1 & ? & 2 & 0 \\ -1 & 1 & ? & -1 \\ 1 & -1 & -2 & ? \end{pmatrix}$$

7)
$$\begin{pmatrix} ? & -1 & 3 & -1 \\ -2 & ? & 3 & -1 \\ -1 & -2 & ? & -1 \\ 0 & -1 & 1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-3 -1 2 -1), (1 0 -1 1), (1 -1 -2 -2), (-2 -1 1 0), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (6 -3 -1) is a linear combination of the vectors (1 1 0), (-2 2 2), (-1 1 -1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} \cdot \mathbf{X} \cdot \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$ $\mathbf{1} \cdot \begin{pmatrix} -\mathbf{1} & * \\ * & * \end{pmatrix} \quad \mathbf{2} \cdot \begin{pmatrix} \mathbf{1} & * \\ * & * \end{pmatrix} \quad \mathbf{3} \cdot \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \quad \mathbf{4} \cdot \begin{pmatrix} * & -\mathbf{1} \\ * & * \end{pmatrix} \quad \mathbf{5} \cdot \begin{pmatrix} * & \mathbf{1} \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

Find the solution of the linear system

 $2 x_1 - 3 x_2 + 4 x_3 + 5 x_4 = -3$ $x_2 + 8 x_3 + 7 x_4 = -1$ $-3 x_1 + 5 x_2 - 2 x_3 - 4 x_4 == 4$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

 \rangle

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} ?\\ ?\\ 6\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ -4 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ 9\\ 9 \end{pmatrix}, \begin{pmatrix} ?\\ -1\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ 9\\ ?\\ ? \end{pmatrix}$$

2) $\begin{pmatrix} ?\\ ?\\ ?\\ -3 \end{pmatrix} + \langle \begin{pmatrix} -12\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ -4\\ ?\\ ?\\ ? \end{pmatrix} \rangle$
3) $\begin{pmatrix} ?\\ ?\\ 0\\ ? \end{pmatrix} + \langle \begin{pmatrix} -14\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ -7\\ ?\\ ?\\ ? \end{pmatrix} \rangle$
4) $\begin{pmatrix} ?\\ -6\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ 9\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} -5\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} \rangle$
5) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 1 \end{pmatrix} + \langle \begin{pmatrix} -11\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ -5\\ ?\\ ?\\ ? \end{pmatrix} \rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

animal flours	5К	Feed of company 2 12K	4K	Feed of compa 7K
vegetable flours	2K	5K	2K	3K
fish flours	9К	20К	7K	12K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
53K	23K	90K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 2 to be equal to 2.

- 1) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?
- 2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2
- 3) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1
- 4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0
- 5) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 0 & -1 & 0 & -1 \\ -1 & -5 & 2 & -2 \\ -2 & -8 & 3 & -3 \\ 2 & 3 & 0 & 2 \end{pmatrix}$$
.
1) $\begin{pmatrix} ? & -4 & -1 & -3 \\ 0 & ? & 1 & 1 \\ -1 & 2 & ? & 1 \\ -2 & 3 & 1 & ? \end{pmatrix}$ 2) $\begin{pmatrix} ? & -3 & 2 & 1 \\ -2 & ? & -4 & -1 \\ -3 & 8 & ? & -1 \\ 1 & -6 & 4 & ? \end{pmatrix}$ 3) $\begin{pmatrix} ? & -2 & 1 & 2 \\ 0 & ? & 2 & 2 \\ 0 & -1 & ? & 1 \\ 0 & -4 & 4 & ? \end{pmatrix}$ 4)
 $\begin{pmatrix} ? & 0 & -2 & 0 \\ -1 & ? & 2 & 1 \\ -1 & -1 & ? & 0 \\ 0 & 0 & -1 & ? \end{pmatrix}$ 5) $\begin{pmatrix} ? & 0 & 0 & 1 \\ 0 & ? & -1 & 0 \\ 0 & 0 & 1 & ? \end{pmatrix}$ 6) $\begin{pmatrix} ? & 0 & 0 & 1 \\ 0 & ? & 1 & 2 \\ 0 & -1 & ? & 2 \\ 0 & 1 & -3 & ? \end{pmatrix}$ 7) $\begin{pmatrix} ? & 0 & 2 & -1 \\ -1 & ? & -1 & 1 \\ 0 & 0 & ? & 0 \\ -2 & -1 & -2 & ? \end{pmatrix}$

Exercise 2

How many of the vectors (n-tuples)

(-1 1 1 0), (-2 2 1 0), (-1 2 -2 -1), (-1 1 0 0), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (5 -9 -7) is a linear combination of the vectors (1 0 0), (2 -1 2), (-3 -1 -1), (-4 0 -3), (-2 -1 -1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 2 & 1 \\ -5 & -2 \end{pmatrix} \cdot \mathbf{X} \cdot \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} 5 & -7 \\ -12 & 17 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & 1 \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * \\ -1 & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 0 & -1 & 1 & 1 \\ 2 & 3 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ a & 1 & -1 & 1 \end{pmatrix} \text{ has determinant 7?}$ 1) 0 2) -1 3) 3 4) -5 5) 4

Find the solution of the linear system

 $\begin{array}{l} -x_1 + 5 \; x_2 + 2 \; x_3 + x_4 == -1 \\ 7 \; x_2 + 7 \; x_3 + 3 \; x_4 == -1 \\ -x_1 - 2 \; x_2 - 5 \; x_3 - 2 \; x_4 == 0 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	11K	7K	9K
Feed of company 2	21K	14K	19K
Feed of company 3	18K	11K	13K
Feed of company 4	33K	22K	30K

The experts of the livestock farm determined

that every week each animal needs the following composition:

anımai ti	Lours vegetable f	-iours fish fiou
277K	179K	233K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 15.

- 1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0
- 2) Feed 1=?, Feed 2=?, Feed 3=2, Feed 4=?
- 3) Feed 1=?, Feed 2=3, Feed 3=?, Feed 4=?
- 4) Feed 1=?, Feed 2=?, Feed 3=4, Feed 4=?
- 5) Feed 1=?, Feed 2=1, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$1) \begin{pmatrix} ? & -1 & -3 & 0 \\ 1 & ? & 1 & 0 \\ -3 & -2 & ? & 2 \\ -2 & -1 & -3 & ? \end{pmatrix} 2) \begin{pmatrix} ? & 1 & 0 \\ -2 & ? & -1 \\ 0 & 2 & ? \\ 0 & -1 & 0 \end{pmatrix}$	$ \begin{array}{c} -1 \\ 3 \\ -2 \\ ? \end{array} \right) 3) \left(\begin{array}{c} ? & -1 & 4 & 1 \\ 0 & ? & -2 & 0 \\ 1 & -1 & ? & 0 \\ -1 & 0 & -3 & ? \end{array} \right) 4) $
$-\begin{pmatrix} ? & 0 & -1 & 0 \\ 0 & ? & 0 & -1 \\ -1 & -1 & ? & 0 \\ -1 & 2 & 1 & ? \end{pmatrix} 5) \begin{pmatrix} ? & 0 & 0 \\ -5 & ? & -1 \\ 9 & -4 & ? \\ -5 & 4 & -1 \end{pmatrix}$	$ \begin{array}{c} -1 \\ 1 \\ -2 \\ ? \end{array} \right) 6) \begin{pmatrix} ? & 0 & 0 & -1 \\ 0 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ 1 & 0 & -1 & ? \end{array} \right) 7) \begin{pmatrix} ? & 0 & 0 & 0 \\ 2 & ? & 0 & 1 \\ -2 & 0 & ? & 0 \\ 0 & -1 & 1 & ? \end{array} \right) $

Exercise 2

How many of the vectors (n-tuples)

(2 -1 -2 -1 2), (-1 -1 2 1 1), (0 -1 1 -2 -1), (0 -1 -2 -1 2), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (0 6 5 2) is a linear combination of the vectors (-1 -2 -1 2), (-1 0 -1 1), (-3 -3 -2 1), (2 1 1 0), (-2 -1 -1 -1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & 2 & -1 \\ 3 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & -1 \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 0 & 2 & -1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & a & 1 \\ 1 & 2 & -2 & 1 \end{pmatrix} \ \ \text{has determinant } -2? \\ 1) \ \ -3 \ \ 2) \ \ -1 \ \ \ 3) \ \ -2 \ \ \ 4) \ \ 3 \ \ \ 5) \ \ -4$

Find the solution of the linear system

 $\begin{array}{l} 2 \, x_1 + 3 \, x_2 + 2 \, x_3 + x_4 == -2 \\ -3 \, x_1 - 4 \, x_2 - 3 \, x_3 + 5 \, x_4 == 4 \\ -3 \, x_1 - 7 \, x_3 + 5 \, x_4 == -8 \\ 2 \, x_1 + 2 \, x_2 + 3 \, x_3 + x_4 == 1 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} ?\\ ?\\ ?\\ 5\\ ? \end{pmatrix} + \langle \begin{pmatrix} 32\\ ?\\ ?\\ ?\\ ? \end{pmatrix} \rangle$$

2) $\begin{pmatrix} ?\\ ?\\ -7\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} , \begin{pmatrix} 4\\ ?\\ ?\\ ?\\ ? \end{pmatrix} \rangle$
3) $\begin{pmatrix} -2\\ ?\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} -5\\ ?\\ ?\\ ?\\ ? \end{pmatrix} , \begin{pmatrix} ?\\ ?\\ -4\\ ? \end{pmatrix} , \begin{pmatrix} ?\\ 2\\ ?\\ ? \end{pmatrix} , \begin{pmatrix} ?\\ ?\\ ?\\ ? \end{pmatrix} \rangle$
4) $\begin{pmatrix} ?\\ 4\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ -10\\ ?\\ ? \\ ? \end{pmatrix} \rangle$
5) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -3 \end{pmatrix} + \langle \begin{pmatrix} ?\\ -10\\ ?\\ ? \\ ? \end{pmatrix} \rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
animal flours	9К	10K	22K	57K
vegetable flours	4K	4K	9К	23K
fish flours	өк	1K	2K	6K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
272K	111K	25K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

- 1) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?
- 2) Feed 1=?, Feed 2=2, Feed 3=?, Feed 4=?
- 3) Feed 1=?, Feed 2=?, Feed 3=4, Feed 4=?
- 4) Feed 1=?, Feed 2=?, Feed 3=5, Feed 4=?
- 5) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ -2 & -1 & -1 & -1 \\ -5 & 0 & -3 & 2 \\ 8 & 0 & 5 & -3 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -1 & -6 & -4 \\ -2 & ? & 4 & 3 \\ -1 & 1 & ? & 6 \\ 1 & -1 & -1 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & -2 & 1 & 0 \\ -1 & ? & 1 & -1 \\ 1 & -1 & ? & 1 \\ 1 & 0 & -1 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -1 & -2 & 0 \\ 0 & ? & 4 & 1 \\ -2 & 2 & ? & 0 \\ 0 & 0 & 3 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & -1 & -1 & 1 \\ 0 & ? & 0 & 0 \\ 0 & 0 & ? & 0 \\ 1 & -2 & -1 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & -1 & 0 & 1 \\ 0 & ? & 0 & -1 \\ 0 & 1 & ? & -1 \\ 3 & -1 & 1 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & 0 & -12 & -5 \\ -2 & ? & -5 & -4 \\ 3 & 0 & ? & 3 \\ -1 & -1 & -3 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & 0 & 0 & 0 \\ -3 & ? & 2 & -1 \\ 2 & 1 & ? & 0 \\ 9 & 2 & -5 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

```
(0 1 0 -2), (-2 0 1 -1), (-1 0 -1 0),
are independent?
1) 1 2) 2 3) 3
```

Exercise 3

Check whether the vector $(n-tuple) \ (\ -2 \ -2 \ -2 \)$ is a linear combination of the vectors

 $(-2 \ -2 \ -2 \)$, $(-4 \ -4 \ -4 \)$, 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}^{-1} \cdot X + \begin{pmatrix} -1 & 1 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ -3 & 3 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & -3 \\ -2 & 0 & -1 & 1 \\ a & 0 & 1 & 1 \end{pmatrix}$$
 has determinant -2?
1) -2 2) 5 3) -5 4) 2 5) -4

Find the solution of the linear system

 $\begin{array}{l} -x_1+x_2+x_3+5\ x_4+x_5=:0\\ -4\ x_1+3\ x_2-5\ x_3+2\ x_4-5\ x_5=:3\\ 5\ x_1-4\ x_2+4\ x_3-7\ x_4+4\ x_5=:-3 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
animal flours	2К	2К	5K	6K
vegetable flours	5К	6K	14K	17K
fish flours	5K	5K	11K	13K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
32K	88K	72K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 1 to be equal to 4.

1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2

2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=4

3) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?

4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

5) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 0 & -1 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -2 & -2 & -1 \\ 0 & 2 & 3 & 1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -11 & -5 & -1 \\ -1 & ? & 1 & 0 \\ 1 & -2 & ? & 0 \\ 1 & -5 & -2 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & 1 & 0 & 0 \\ -1 & ? & -1 & -1 \\ 0 & 0 & ? & 1 \\ 2 & 0 & -1 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -3 & 7 & -2 \\ 3 & ? & 0 & 0 \\ 0 & 0 & ? & 0 \\ 2 & 3 & -3 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & -2 & -4 & 3 \\ -2 & ? & 0 & -1 \\ 1 & -1 & ? & 1 \\ -1 & 0 & 1 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & -2 & -1 & 1 \\ 0 & ? & 0 & -1 \\ -1 & 0 & ? & 0 \\ -1 & 0 & 2 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & -2 & 3 & 0 \\ 0 & ? & -2 & 0 \\ 0 & 0 & ? & 0 \\ 1 & 2 & -3 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & -2 & 3 & 4 & 7 \\ -5 & 2 & ? & -3 & 7 \\ -5 & 2 & ? & -3 & 7 \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(1 1 0 0 -2), (-1 1 -2 0 1), (-1 1 1 2 0), (2 -1 1 -2 1), (2 -2 0 -1 -1), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (0 0 -4 -5) is a linear combination of the vectors (-1 -3 1 3), (0 1 -1 -1), (-1 -1 1), (-2 -4 0 4), (0 2 -2 -2), (-1 -2 0 2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{2} & \mathbf{3} & \mathbf{1} \\ -\mathbf{2} & \mathbf{2} & \mathbf{1} \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{2} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & -\mathbf{3} & -\mathbf{2} \\ -\mathbf{3} & \mathbf{6} & \mathbf{4} \\ -\mathbf{2} & \mathbf{7} & \mathbf{4} \end{pmatrix}$$

$$\mathbf{1}) \quad \begin{pmatrix} \mathbf{0} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \end{pmatrix} \qquad \mathbf{2}) \quad \begin{pmatrix} \mathbf{*} & -\mathbf{2} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \end{pmatrix} \qquad \mathbf{3}) \quad \begin{pmatrix} \mathbf{*} & \mathbf{0} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \end{pmatrix} \qquad \mathbf{4}) \quad \begin{pmatrix} \mathbf{*} & \mathbf{2} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} \end{pmatrix}$$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ a & 1 & -2 & 1 \end{pmatrix}$ has determinant 4? 1) 0 2) 3 3) 2 4) 5 5) 4

Find the solution of the linear system

 $\begin{array}{l} 3 \; x_1 - 8 \; x_2 + 4 \; x_3 - 5 \; x_4 == -1 \\ -2 \; x_1 + 6 \; x_2 - 3 \; x_3 - 5 \; x_4 == -2 \\ -x_1 + 5 \; x_2 - 2 \; x_3 == 3 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

1)
$$\begin{pmatrix} ?\\ ?\\ 1\\ \end{pmatrix} + \langle \begin{pmatrix} ?\\ -14\\ ?\\ ?\\ \end{pmatrix} \rangle$$

2) $\begin{pmatrix} ?\\ -8\\ ?\\ ?\\ \end{pmatrix} + \langle \begin{pmatrix} 5\\ ?\\ ?\\ ?\\ ?\\ \end{pmatrix} \rangle$, $\begin{pmatrix} ?\\ ?\\ -6\\ ?\\ \end{pmatrix}$, $\begin{pmatrix} ?\\ -7\\ ?\\ ?\\ ?\\ \end{pmatrix} \rangle$
3) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 1\\ \end{pmatrix}$
4) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ 0\\ \end{pmatrix} + \langle \begin{pmatrix} ?\\ -15\\ ?\\ ?\\ ?\\ \end{pmatrix} \rangle$
5) $\begin{pmatrix} -9\\ ?\\ ?\\ ?\\ ?\\ ?\\ \end{pmatrix} + \langle \begin{pmatrix} ?\\ -15\\ ?\\ ?\\ -52\\ ?\\ \end{pmatrix} \rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	3K	16K	6K
Feed of company 2	2K	11K	4K
Feed of company 3	2K	10K	4K
Feed of company 4	2K	13K	5K

The experts of the livestock farm determined that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
26K	142K	53K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 11.

- 1) Feed 1=?, Feed 2=?, Feed 3=1, Feed 4=?
- 2) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?
- 3) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?
- 4) Feed 1=?, Feed 2=1, Feed 3=?, Feed 4=?
- 5) Feed 1=?, Feed 2=4, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix	$ \left(\begin{array}{rrrr} 1 & -1 & -1 & -1 \\ 2 & 5 & 4 & 1 \\ 2 & 6 & 5 & 2 \\ 0 & 0 & 0 & 1 \end{array} \right) . $
$1) \begin{pmatrix} ? & -2 & 0 & -3 \\ 0 & ? & 0 & 2 \\ 1 & -2 & ? & -2 \\ 0 & -1 & -1 & ? \end{pmatrix} 2) \begin{pmatrix} ? & -1 & 0 \\ -10 & ? & -1 \\ 0 & 0 & ? \\ 1 & 0 & 0 \end{pmatrix}$	$ \begin{array}{c} -9\\ 14\\ 1\\ 2\\ 2\\ \end{array} \end{array} \right) 3) \left(\begin{array}{cccc} ? & -1 & 1 & 1\\ 3 & ? & -4 & -5\\ -2 & -2 & ? & 4\\ 1 & 1 & -1 & ? \end{array} \right) 4)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Exercise 2

How many of the vectors (n-tuples)

(-1 -4 -4 -1 -2), (0 0 2 2 -2), (-1 -2 -2 0 -2), (0 2 2 1 0), (0 -1 -1 0 -2), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (8 -4 2 -7) is a linear combination of the vectors (0 -2 4 1), (2 0 -2 -2), (2 -2 2 -1), (0 0 2 -1), (-2 0 4 1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ -1 & 1 & 0 \end{pmatrix} \cdot X - \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ -2 & 0 & -2 \\ -3 & 0 & -3 \end{pmatrix}$ $1) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

```
 \begin{pmatrix} 0 & 0 & 1 & 5 \\ 0 & 0 & 1 & 4 \\ 1 & a & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}  has determinant -6?
1) 1 2) -5 3) -4 4) 2 5) 5
```

Find the solution of the linear system

 $\begin{array}{l} 4 \; x_1 \; - \; 7 \; x_2 \; - \; 2 \; x_3 \; + \; 3 \; x_4 \; + \; 2 \; x_5 \; + \; 4 \; x_6 \; = \; 1 \\ 6 \; x_1 \; - \; 11 \; x_2 \; - \; 3 \; x_3 \; + \; 2 \; x_4 \; - \; 4 \; x_5 \; - \; 5 \; x_6 \; = \; -5 \\ 5 \; x_1 \; - \; 10 \; x_2 \; - \; 3 \; x_3 \; - \; 5 \; x_4 \; + \; 5 \; x_6 \; = \; 2 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

		animal flours	vegetable flours	fish flours
Feed of	company 1	5K	11K	10K
Feed of	company 2	7K	15K	13K
Feed of	company 3	19K	42K	38K
Feed of	company 4	7K	17K	17K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
85K	195K	184K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9.

1) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

3) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

4) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?

5) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1

Exercise 1

Compute the inverse of the matrix	$ \left(\begin{array}{rrrr} 1 & 0 & 1 & 0 \\ -2 & 1 & -1 & -1 \\ -4 & 0 & -1 & -1 \\ 2 & 0 & 0 & 1 \end{array} \right) \cdot$
$1) \begin{pmatrix} ? & -1 & -3 & -1 \\ 1 & ? & 0 & 0 \\ 2 & 0 & ? & 1 \\ 2 & 0 & 2 & ? \end{pmatrix} 2) \begin{pmatrix} ? & -1 & -1 \\ 0 & ? & 1 \\ -1 & 0 & ? \\ 4 & -1 & -3 \end{pmatrix}$	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ -1 \\ ? \end{array} \right) 3) \left(\begin{array}{cccc} ? & -1 & 0 & 0 \\ 2 & ? & -1 & 1 \\ 3 & 0 & ? & -2 \\ -1 & 0 & -2 & ? \end{array} \right) 4) $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$

Exercise 2

How many of the vectors (n-tuples)

(0 -2 1 2 -1), (-4 4 2 0 2), (-2 2 1 0 1), (2 1 2 0 0), (1 -1 -2 1 -1), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) (-9 -4 0 2) is a linear combination of the vectors (2 0 0 -2), (2 1 0 1), (-1 1 -1 -2), (0 -2 1 2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 2 & -1 & 2 \\ -1 & 1 & -1 \\ -1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} X + \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{pmatrix}$ $1) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & * & -1 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & 2 \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -2 & 1 & a & -2 \\ -1 & -2 & -1 & 3 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ has determinant -12? 1) 5 2) 2 3) -4 4) -5 5) 1

Find the solution of the linear system

 $\begin{array}{c} -4 \; x_1 + 3 \; x_2 - x_3 - x_4 - 2 \; x_5 = 0 \\ 2 \; x_1 - 5 \; x_2 + 8 \; x_3 + x_4 + 4 \; x_5 = 5 \\ -2 \; x_1 - 3 \; x_2 + 9 \; x_3 - x_4 + x_5 = 6 \\ -x_2 + 2 \; x_3 - x_4 - x_5 = 1 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

In a livestock f	arm, animal feed from s	several companies is u	sed.	
Every company produces feed combining different types of flour in different				
proportions as	we can see in the tab	le below which indicat	es the amount of	
kilograms of e	very component that in	cludes the sack of flo	our of each company:	
U	Food of company 1	Feed of company 2	Feed of company 3	Food of comp
animal flours	2K	4K	1K	Feed of compa 3K
vegetable flours		-+K 3K	1K 1K	2K
fish flours	8K 8K	9K	2K	8K
	-		LK	UK
•	he livestock farm deten			
that every wee	k each animal needs th	e following compositic	on:	
animal flours	vegetable flours fi	sh flours		
27K	14K 78	K		
How many sacks o	f every company are neo	ressary to reach the		
,	omposition taking into	,	erly store the	
	al number of sacks for		•	
Teeu, the tot	at number of sacks for	every animal has to t	e equal to II.	
1) Feed 1=?, Fee	d 2=?, Feed 3=?, Feed	4=0		
2 Eood 1-0 Eoo	d 2=?, Feed 3=?, Feed	1-2		
2) 1000 1-0, 100		+-:		
3) Feed 1=2, Fee	d 2=?, Feed 3=?, Feed	4=?		
4 Food 1) Foo	d)) Food) 1 Food	4 2		
4) Feed I=r, Fee	d 2=?, Feed 3=1, Feed	4= :		

5) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=3

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} -2 & -3 & 0 & -3 \\ 0 & -1 & 0 & -2 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -1 & -2 & 0 \\ -1 & ? & 1 & 0 \\ -2 & 0 & ? & 1 \\ -1 & 1 & 0 & ? \end{pmatrix}$$
 2)
$$\begin{pmatrix} ? & -1 & -1 & 0 \\ -1 & ? & 1 & 0 \\ -1 & 1 & ? & 0 \\ 0 & -2 & 1 & ? \end{pmatrix}$$
 3)
$$\begin{pmatrix} ? & -1 & 0 & -1 \\ -1 & ? & 0 & -1 \\ -2 & 1 & ? & 0 \\ 0 & 3 & 1 & ? \end{pmatrix}$$
 4)
$$\begin{pmatrix} ? & 0 & -1 & -1 \\ -1 & 1 & ? & 0 \\ 0 & 3 & 1 & ? \end{pmatrix}$$
 4)
$$\begin{pmatrix} ? & 0 & -1 & -1 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 7 & -1 \\ 0 & -2 & 7 & -1 \\ -1 & 0 & -2 & ? \end{pmatrix}$$
 6)
$$\begin{pmatrix} ? & 0 & -1 & -1 \\ 1 & ? & -2 & -1 \\ -1 & 1 & ? & 1 \\ 1 & 0 & -2 & ? \end{pmatrix}$$
 7)
$$\begin{pmatrix} ? & 0 & -1 & 1 & 7 \\ 0 & ? & 1 & 0 \\ 0 & 2 & ? & 1 & 0 \\ 0 & 3 & -2 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(2 1 -2 1 -2), (2 -1 2 -1 0), (-1 2 -1 0 0), (0 2 1 2 0), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) $(-8\ 5\ -1\ 6)$ is a linear combination of the vectors

(-1 1 0 -2), (-2 -1 -2 1), (1 -2 2 -2), , (0 -1 -2 -2), (-3 0 -2 -1), (-3 1 -4 3), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & -3 & -1 \\ -1 & 0 & -1 \\ 1 & 2 & 2 \end{pmatrix} \cdot X - \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} -2 & -3 & 2 \\ -1 & -3 & -2 \\ 1 & 4 & -1 \end{pmatrix}$ $1) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} * & * & -2 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & * & -1 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ 1 & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -1 & 2 & 0 & 1 \\ -1 & -1 & 0 & 0 \\ a & 1 & -1 & 1 \\ -1 & 1 & -1 & 0 \end{pmatrix}$ has determinant 9? 1) -5 2) 5 3) -1 4) -3 5) 1

Find the solution of the linear system

 $\begin{array}{l} -x_1 + 6 \; x_2 + 5 \; x_3 - 3 \; x_4 == -4 \\ 2 \; x_2 + 2 \; x_3 - x_4 == -1 \\ -x_1 - 3 \; x_2 - 3 \; x_3 + 2 \; x_4 == 4 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

 \rangle

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	2K	1K	өк
Feed of company 2	11K	6K	өк
Feed of company 3	33K	23K	5K
Feed of company 4	13K	9К	2K

The experts of the livestock farm determined that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
199K	129K	21K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 14.

- 1) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?
- 2) Feed 1=?, Feed 2=?, Feed 3=1, Feed 4=?
- 3) Feed 1=3, Feed 2=?, Feed 3=?, Feed 4=?
- 4) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?
- 5) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 1 & 2 & -1 & -1 \\ 1 & 4 & -1 & -2 \\ -1 & -2 & 2 & 1 \\ 0 & -3 & 0 & 2 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -2 & 0 & -2 \\ -1 & ? & 0 & -1 \\ 0 & -2 & ? & -3 \\ -2 & 3 & 0 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & -2 & 6 & 2 \\ -2 & ? & -11 & -4 \\ 0 & 0 & ? & 1 \\ -2 & 5 & -9 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -1 & 1 & 0 \\ -2 & ? & 0 & 1 \\ 1 & 0 & ? & 0 \\ -3 & 3 & 0 & ? \end{pmatrix}$$
4)

$$\begin{pmatrix} ? & 0 & -1 & -1 \\ -4 & ? & 1 & 0 \\ -2 & -1 & ? & 2 \\ 1 & -1 & 0 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & 0 & -1 & -1 \\ 2 & ? & -1 & 0 \\ -4 & 0 & ? & 6 \\ -1 & 0 & 0 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & 0 & -1 & 0 \\ 1 & ? & 0 & 2 \\ -2 & -2 & ? & -4 \\ 2 & 1 & -1 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & 0 & 0 & 0 \\ -1 & ? & 1 & 0 \\ 0 & -1 & ? & 0 \\ 1 & 0 & -1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(1 1 2 1 0), (1 -1 2 -1 -2), (2 -2 2 1 2), (2 -1 -1 0 0), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (-6 -6 3 -7) is a linear combination of the vectors

(4 -4 4 2), (2 -2 2 1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} -1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 2 & -1 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$ $1) \quad \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} * & * & 1 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & * & * \\ -2 & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & * \\ 2 & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\left(\begin{array}{cccc} -1 & 0 & 3 & 3 \\ 1 & 0 & -1 & 0 \\ 2 & a & 1 & 2 \\ 1 & 0 & -2 & -2 \end{array} \right) \text{ has determinant } -1? \\ 1 & 4 & 2 & -5 & 3 & 5 & 4 & 1 & 5 & -2 \end{array}$

Find the solution of the linear system

 $\begin{array}{c} -2 \; x_2 - 7 \; x_3 - 5 \; x_4 + 10 \; x_5 = = -3 \\ 2 \; x_1 - 5 \; x_2 + 3 \; x_3 + x_4 - 3 \; x_5 = = 2 \\ 3 \; x_1 + 4 \; x_2 - x_3 - 2 \; x_4 + 3 \; x_5 = = 5 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

		animal flours	vegetable flours	fish flours
Feed of compar	ny 1	3K	ЗК	2K
Feed of compar	ıy 2	3K	ЗК	2K
Feed of compar	ηу 3	13K	16K	ЗК
Feed of compar	ny 4	10K	12K	ЗК

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
79K	96K	21K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 1 to be equal to 0.

1) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

2) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?

3) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2

4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=3

5) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=1

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} 3 & 0 & -2 & 2 \\ -3 & 1 & 3 & -3 \\ -1 & 0 & 1 & -1 \\ -2 & 1 & 2 & -1 \end{pmatrix}$$

1)
$$\begin{pmatrix} ? & -2 & 1 & 1 \\ 1 & ? & -2 & -1 \\ 3 & -4 & ? & 0 \\ 0 & 0 & 1 & ? \end{pmatrix}$$

2)
$$\begin{pmatrix} ? & 0 & 2 & 0 \\ 0 & ? & -3 & 0 \\ 1 & -1 & ? & 1 \\ 0 & -1 & 1 & ? \end{pmatrix}$$

3)
$$\begin{pmatrix} ? & -1 & 0 & -2 \\ -2 & ? & 0 & 3 \\ 0 & 0 & ? & -1 \\ 0 & 0 & 1 & ? \end{pmatrix}$$

4)
$$\begin{pmatrix} ? & -1 & 0 & -2 \\ -2 & ? & 0 & 3 \\ 0 & 0 & ? & -1 \\ 0 & 0 & 1 & ? \end{pmatrix}$$

4)
$$\begin{pmatrix} ? & -1 & 0 & -1 \\ 0 & 0 & 1 & ? \\ 1 & 2 & 2 & ? \end{pmatrix}$$

5)
$$\begin{pmatrix} ? & -1 & 1 & 1 \\ 3 & ? & -1 & -1 \\ -10 & 0 & ? & 7 \\ -4 & 0 & 2 & ? \end{pmatrix}$$

6)
$$\begin{pmatrix} ? & -1 & 3 & 2 \\ 2 & ? & -3 & -1 \\ 0 & 0 & ? & 0 \\ 1 & 0 & -2 & ? \end{pmatrix}$$

7)
$$\begin{pmatrix} ? & 0 & 0 & -1 \\ 2 & ? & 0 & -2 \\ 0 & 2 & ? & -1 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(1 1 -2 -1 0), (-2 -2 -2 1 2), (-2 -1 -2 -2 -2), (2 1 2 0 -2), are independent? 1) 1 2) 2 3) 3 4) 4

Exercise 3

Check whether the vector (n-tuple) (2 1 1 $_{-2}$) is a linear combination of the vectors

(2 1 1 -2), (4 2 2 -4), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} X - \begin{pmatrix} 1 & 5 & -3 \\ 0 & 2 & -1 \\ 1 & 2 & -1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} -2 & -11 & 5 \\ 0 & -3 & 1 \\ 0 & 3 & -1 \end{pmatrix}$ $1) \quad \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & -1 & 2 & 1 \\ 1 & a & -2 & -2 \end{pmatrix} \text{ has determinant 3?}$ 1) -5 2) 2 3) 1 4) -2 5) -1

Find the solution of the linear system

 $\begin{array}{l} 6 \, x_1 + x_2 + 9 \, x_3 + 4 \, x_4 - x_5 == 3 \\ -4 \, x_1 - x_2 - 6 \, x_3 - 6 \, x_4 + x_5 == -9 \\ -5 \, x_1 - x_2 - 8 \, x_3 + x_4 + 3 \, x_5 == 1 \\ 3 \, x_1 + x_2 + 5 \, x_3 + x_4 - 3 \, x_5 == 5 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)

In a livestock far	rm, animal feed from s	everal companies is u	sed.	
Every company produces feed combining different types of flour in different				
proportions as we can see in the table below which indicates the amount of				
		ludes the sack of flo		
	5			
			Feed of company 3	Feed of compa
animal flours	2K	ЗК	1K	1K
vegetable flours	1K	2К	1K	1K
fish flours	5K	8K	4K	7K
The experts of the	e livestock farm deter	mined		
		e following compositio	n•	
2		0		
	0	sh flours		
16K 1	.0K 48	к		
How many sacks of	every company are nec	essary to reach the		
recommended cor	mosition taking into	account that, to prop	erly store the	
		every animal has to b	,	
		every animar has to b	e equal to 5.	
1) Feed 1=?, Feed	2=?, Feed 3=0, Feed 4	1=?		
Z) Feed I=1, Feed	2=?, Feed 3=?, Feed	+= :		
3) Feed $1=?$, Feed	2=0, Feed 3=?, Feed 4	1=?		
, -				
4) Feed 1=?, Feed	2=1, Feed 3=?, Feed	1=?		

5) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$ 1) \begin{pmatrix} ? & 2 & -1 & -2 \\ 0 & ? & 0 & -1 \\ -3 & 0 & ? & 0 \\ -3 & 0 & 1 & ? \end{pmatrix} 2) \begin{pmatrix} ? & -1 & 0 \\ -5 & ? & -3 \\ 3 & 0 & ? \\ 3 & -2 & -2 \end{pmatrix} $	$ \begin{array}{c} 0\\ 1\\ -1\\ ? \end{array} \right) 3) \left(\begin{array}{cccc} ? & -1 & 0 & 0\\ -1 & ? & -2 & -3\\ 0 & -1 & ? & 1\\ 0 & -5 & 4 & ? \end{array} \right) 4) $
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{ccccc} ? & 0 & -1 & 1 \\ 0 & ? & -1 & 0 \\ -1 & 0 & ? & 0 \\ 0 & 1 & -2 & ? \end{array}\right) 7) \left(\begin{array}{ccccc} ? & 0 & 1 & -1 \\ 0 & ? & 0 & 0 \\ 5 & 0 & ? & 3 \\ 3 & -1 & 0 & ? \end{array}\right)$

Exercise 2

How many of the vectors (n-tuples)

(1 -1 1 0), (0 2 1 2), (1 -1 2 0), are independent? 1) 1 2) 2 3) 3

Exercise 3

Check whether the vector (n-tuple) (-2 -7 0) is a linear combination of the vectors (4 2 -4), (0 0 -4), (2 1 -2), (0 0 4), (2 1 2), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} \mathbf{1} & -\mathbf{1} \\ -\mathbf{1} & 2 \end{pmatrix} \cdot \mathbf{X} \cdot \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} = \begin{pmatrix} -\mathbf{1} & \mathbf{1} \\ 2 & -2 \end{pmatrix}$ $\mathbf{1} \cdot \begin{pmatrix} -\mathbf{2} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \end{pmatrix} = \mathbf{2} \cdot \begin{pmatrix} -\mathbf{1} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \end{pmatrix} = \mathbf{3} \cdot \begin{pmatrix} \mathbf{0} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \end{pmatrix} = \mathbf{4} \cdot \begin{pmatrix} \mathbf{2} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \end{pmatrix} = \mathbf{5} \cdot \begin{pmatrix} \mathbf{x} & -\mathbf{1} \\ \mathbf{x} & \mathbf{x} \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -1 & -1 & 0 & 2 \\ 1 & 0 & 0 & 1 \\ 2 & 0 & 1 & 1 \\ a & -1 & 1 & 0 \end{pmatrix}$ has determinant -2? 1) 0 2) 2 3) -3 4) 4 5) 1

Find the solution of the linear system

taking as parameters, if it is necessary, the

last variables and solving for the first ones $(\mbox{that}\xspace{ is solving }$

apply Gauss elimination technique selecting columns from left to right)

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	19K	13K	20K
Feed of company 2	11K	7K	6K
Feed of company 3	20K	13K	14K
Feed of company 4	3K	2K	ЗК

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
132K	89K	127K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 12.

1) Feed 1=4, Feed 2=?, Feed 3=?, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0

3) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?

4) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=2

5) Feed 1=?, Feed 2=2, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix $\begin{pmatrix} -1 & 3 & -2 & 2 \\ 1 & -1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 2 & -1 & 1 \end{pmatrix}$.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4)
$ \begin{pmatrix} ? & -2 & -1 & -1 \\ 0 & ? & 1 & 0 \\ 0 & -2 & ? & 0 \\ -1 & 1 & 0 & ? \end{pmatrix} 5) \begin{pmatrix} ? & -2 & 0 & -1 \\ 0 & ? & -1 & 1 \\ 1 & 4 & ? & 3 \\ -1 & 1 & 1 & ? \end{pmatrix} 6) \begin{pmatrix} ? & -1 & -2 & 1 \\ 2 & ? & 3 & 0 \\ 1 & 0 & ? & 0 \\ -3 & -4 & -4 & ? \end{pmatrix} $	$(7) \left(\begin{array}{cccc} ? & -1 & -1 & 2 \\ -1 & ? & 1 & -1 \\ 0 & 1 & ? & 0 \\ 0 & 0 & -1 & ? \end{array}\right)$

Exercise 2

How many of the vectors (n-tuples)

(-4 2 -2 2 0), (-2 -1 0 0 -1), (2 2 0 1 1)
, (1 -2 0 1 -1), (-2 1 -1 1 0), (-4 0 -1 1 -1),
are independent?
1) 1 2) 2 3) 3 4) 4 5) 5 6) 6

Exercise 3

Check whether the vector (n-tuple) (3 -9 0 3) is a linear combination of the vectors (-1 0 2 1), (0 -2 0 2), (-2 1 2 2), (-3 1 4 3), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

```
 \begin{pmatrix} X + \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 2 & 2 & -1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -2 \\ 1 & 1 & -1 \end{pmatrix} 
 1) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & -1 \\ * & * & * \\ * & * & * \end{pmatrix}
```

Exercise 5

Compute the value for parameter a in such a way that the matrix

```
 \begin{pmatrix} 0 & 0 & -2 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & a & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}  has determinant -5?
1) 1 2) 5 3) 4 4) -3 5) -4
```

Find the solution of the linear system

 $\begin{array}{l} 2 \; x_2 - 3 \; x_3 + 2 \; x_4 == -4 \\ - x_2 + x_3 - x_4 == -3 \\ - 2 \; x_1 - 2 \; x_2 + 4 \; x_3 - 3 \; x_4 == -10 \\ - 2 \; x_1 - 3 \; x_2 + 6 \; x_3 - 4 \; x_4 == -3 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

. Express the solution by means of linear combinations.

1) $\begin{pmatrix} ?\\ ?\\ ?\\ 4 \end{pmatrix} + \langle \begin{pmatrix} -1\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} 7\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ 0 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ 6\\ ?\\ 6 \end{pmatrix} \rangle$ 2) $\begin{pmatrix} ?\\ ?\\ 9\\ ?\\ 9 \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ -5 \end{pmatrix} \rangle$ 3) $\begin{pmatrix} ?\\ -6\\ ?\\ ?\\ 23 \end{pmatrix} + \langle \begin{pmatrix} ?\\ ?\\ ?\\ 3\\ ? \end{pmatrix} \rangle$ (0) (?)

$5) \quad \begin{pmatrix} 0 \\ ? \\ ? \\ ? \\ \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ -2 \end{pmatrix} \rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	5K	2K	ЗК
Feed of company 2	7K	3K	4K
Feed of company 3	3К	1K	ЗК
Feed of company 4	ЗК	1K	1K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
28K	11K	19K

How many sacks of every company are necessary to reach the recommended composition taking into account that we desire the number of sacks of company 2 to be equal to 1.

- 1) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?
- 2) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?
- 3) Feed 1=?, Feed 2=1, Feed 3=?, Feed 4=?
- 4) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?
- 5) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

Exercise 1

Compute the inverse of the matrix
$$\begin{pmatrix} -2 & 4 & 1 & 1 \\ -2 & 4 & 1 & 0 \\ -1 & 2 & 1 & 0 \\ 1 & -3 & -1 & 0 \end{pmatrix}$$
1)
$$\begin{pmatrix} ? & -7 & -2 & 4 \\ 1 & ? & -1 & 1 \\ 3 & -6 & ? & 4 \\ 0 & -2 & 0 & ? \end{pmatrix}$$
2)
$$\begin{pmatrix} ? & -4 & 0 & -3 \\ 1 & ? & 0 & 1 \\ 3 & -1 & ? & -1 \\ 0 & -2 & 1 & ? \end{pmatrix}$$
3)
$$\begin{pmatrix} ? & -3 & -4 & 2 \\ 0 & ? & 4 & -1 \\ 2 & -1 & ? & -2 \\ -1 & 1 & -1 & ? \end{pmatrix}$$
4)
$$\begin{pmatrix} ? & -1 & 1 & -2 \\ 0 & ? & -1 & -1 \\ 0 & -2 & 1 & ? \end{pmatrix}$$
5)
$$\begin{pmatrix} ? & -1 & 0 & 0 \\ -1 & ? & 1 & 0 \\ -1 & 1 & ? & -1 \\ 0 & 1 & 1 & ? \end{pmatrix}$$
6)
$$\begin{pmatrix} ? & -1 & 1 & -1 \\ 2 & ? & 0 & -2 \\ 2 & 0 & ? & -2 \\ 2 & 1 & 0 & ? \end{pmatrix}$$
7)
$$\begin{pmatrix} ? & -1 & 1 & 1 \\ 3 & ? & 0 & -1 \\ -1 & -1 & ? & 1 \\ -3 & -3 & 1 & ? \end{pmatrix}$$

Exercise 2

How many of the vectors (n-tuples)

(-2 -2 -1 -1 1), (1 -1 1 2 0), (-2 0 1 2 1)
, (1 2 0 1 -1), (-4 -2 -1 -1 1), (-2 0 0 0 0),
are independent?
1) 1 2) 2 3) 3 4) 4 5) 5 6) 6

Exercise 3

Check whether the vector (n-tuple) (-9 -1 0 -5) is a linear combination of the vectors (0 -1 2 0), (-1 2 2 0), (-2 2 1 -2), (-4 4 2 -4), (-2 -2 0 0), (-4 0 1 -2), 1) Yes 2) No

Exercise 4

Solve for the matrix \boldsymbol{X} in the following equation:

 $\begin{pmatrix} -1 & -2 & 2 \\ 1 & 2 & -1 \\ -2 & -3 & 2 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix}$ $1) \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \begin{pmatrix} * & -1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \begin{pmatrix} * & 0 & * \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

```
 \begin{pmatrix} 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & a & -1 & 1 \\ 1 & -1 & 0 & 1 \end{pmatrix}  has determinant -1?
1) 3 2) -4 3) -1 4) 5 5) -3
```

Find the solution of the linear system

 $\begin{array}{l} 2 \; x_1 - 7 \; x_2 + 2 \; x_3 + 2 \; x_4 - 5 \; x_5 + 4 \; x_6 == -5 \\ x_1 - 2 \; x_2 + 3 \; x_4 + 3 \; x_5 - 3 \; x_6 == -4 \\ - x_2 + x_3 - 3 \; x_4 - 3 \; x_5 - 2 \; x_6 == 3 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	14K	9К	15K
Feed of company 2	13K	9K	15K
Feed of company 3	11K	8K	13K
Feed of company 4	4K	3K	5K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
115K	78K	129K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 9.

1) Feed 1=?, Feed 2=?, Feed 3=2, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=3, Feed 4=?

3) Feed 1=3, Feed 2=?, Feed 3=?, Feed 4=?

4) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?

5) Feed 1=?, Feed 2=1, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix $\begin{pmatrix} 2 & 1 & -1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$.	
$1) \begin{pmatrix} ? & -2 & -5 & 0 \\ 0 & ? & 2 & 0 \\ 0 & -1 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix} 2) \begin{pmatrix} ? & -1 & 1 & 0 \\ -1 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ 0 & 0 & -1 & ? \end{pmatrix} 3) \begin{pmatrix} ? & -1 & 0 & -2 \\ -2 & ? & 0 & 1 \\ 1 & 2 & ? & 0 \\ 1 & -1 & 0 & ? \end{pmatrix} 4)$	
$ \begin{pmatrix} ? & -1 & 0 & -1 \\ 0 & ? & 1 & 1 \\ 0 & -2 & ? & 0 \\ -1 & 0 & 0 & ? \end{pmatrix} 5) \begin{pmatrix} ? & -1 & 0 & 0 \\ -1 & ? & -4 & 7 \\ 1 & -2 & ? & 2 \\ 1 & -1 & 1 & ? \end{pmatrix} 6) \begin{pmatrix} ? & -1 & 2 & 1 \\ 1 & ? & 2 & 1 \\ 1 & 0 & ? & 1 \\ 1 & -2 & 3 & ? \end{pmatrix} 7) \begin{pmatrix} ? & 0 & -1 & -2 \\ 1 & ? & 0 & 0 \\ -1 & -1 & ? & -2 \\ -1 & -2 & 1 & ? \end{pmatrix} $	

Exercise 2

How many of the vectors (n-tuples)

(-3 1 -1 1 -1), (-2 2 1 1 -2), (1 -1 1 0 2)
, (1 1 2 0 -1), (0 -2 -1 -2 -1), (2 0 2 2 1),
are independent?
1) 1 2) 2 3) 3 4) 4 5) 5 6) 6

Exercise 3

Check whether the vector (n-tuple) (-9 3 9 -7) is a linear combination of the vectors

(-2 1 -1 -2), (-4 3 -1 -1), (1 0 0 0), (0 0 -2 -1), (-3 1 -1 -2), (2 -2 0 -1), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} X + \begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & -1 \\ -1 & 2 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{pmatrix}$ $1) \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \begin{pmatrix} * & 0 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \begin{pmatrix} * & 2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \begin{pmatrix} * & * & 2 \\ * & * & * \\ * & * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

Find the solution of the linear system

 $\begin{array}{l} -x_1 - x_2 + 3 \ x_3 == 1 \\ -x_1 + x_3 == 0 \\ -x_1 - x_2 + 2 \ x_3 == -1 \\ 2 \ x_1 - x_2 + 2 \ x_3 == 5 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say, apply Gauss elimination technique selecting columns from left to right)

. Express the solution by means of linear combinations.

```
1) \begin{pmatrix} 5\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} 6\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} 6\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ 9\\ ? \end{pmatrix} \rangle

2) \begin{pmatrix} ?\\ ?\\ 5 \end{pmatrix} + \langle \begin{pmatrix} 5\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ -2 \end{pmatrix}, \begin{pmatrix} ?\\ 3\\ ? \end{pmatrix} \rangle

3) \begin{pmatrix} ?\\ 1\\ ? \end{pmatrix}

4) \begin{pmatrix} 0\\ ?\\ ? \end{pmatrix}

5) \begin{pmatrix} ?\\ ?\\ ? \end{pmatrix}
```

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	animal flours	vegetable flours	fish flours
Feed of company 1	5K	8K	4K
Feed of company 2	1K	өк	1K
Feed of company 3	1K	2K	1K
Feed of company 4	11K	17K	9K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
12K	20K	10K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 4.

1) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?

2) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?

3) Feed 1=?, Feed 2=?, Feed 3=1, Feed 4=?

- 4) Feed 1=1, Feed 2=?, Feed 3=?, Feed 4=?
- 5) Feed 1=2, Feed 2=?, Feed 3=?, Feed 4=?

Exercise 1

Compute the inverse of the matrix $\begin{pmatrix} 1\\ 0\\ 0\\ 1 \end{pmatrix}$	$ \left. \begin{array}{cccc} 2 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{array} \right). $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3) \left(\begin{array}{rrrr} ? & -2 & -1 & -1 \\ 1 & ? & 0 & 0 \\ 1 & 0 & ? & 0 \\ 0 & 1 & 0 & ? \end{array}\right) 4)$
$ \begin{pmatrix} ? & -2 & 0 & -3 \\ -2 & ? & 2 & 0 \\ -1 & -1 & ? & -2 \\ -3 & 2 & 3 & ? \end{pmatrix} 5) \begin{pmatrix} ? & -2 & 2 & -2 \\ 1 & ? & 0 & 1 \\ 0 & 1 & ? & 1 \\ -2 & -5 & 2 & ? \end{pmatrix} $	$ 6) \begin{pmatrix} ? & -1 & -1 & 0 \\ -1 & ? & 2 & 1 \\ 1 & -2 & ? & -1 \\ 0 & -2 & 2 & ? \end{pmatrix} 7) \begin{pmatrix} ? & -1 & 1 & -1 \\ -1 & ? & 0 & -2 \\ -1 & -3 & ? & -2 \\ 0 & 0 & 1 & ? \end{pmatrix} $

Exercise 2

How many of the vectors (n-tuples)

(0 -1 0 1), (2 1 2 1), (0 1 2 0), (2 2 1 -2), (2 2 2 0), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector $(n-tuple) \ (\ -4 \ -2 \ -2 \)$ is a linear combination of the vectors

(422), (211), 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot X + \begin{pmatrix} 1 & 1 \\ -5 & -4 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -5 & -3 \end{pmatrix}$ $1) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 1 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} -2 & -1 & 1 & 1 \\ 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -2 \\ 1 & -1 & 1 & a \end{pmatrix}$ has determinant 3? 1) 1 2) 5 3) -2 4) 4 5) 3

Find the solution of the linear system

 $\begin{array}{l} x_1 \,+\, x_2 \,+\, 4 \,\, x_3 \,-\, x_4 \,=: \, -1 \\ -5 \,\, x_1 \,-\, 4 \,\, x_2 \,+\, 3 \,\, x_3 \,-\, 2 \,\, x_4 \,=: \, 5 \end{array}$

taking as parameters, if it is necessary, the

last variables and solving for the first ones (that is to say,

apply Gauss elimination technique selecting columns from left to right)

- . Express the solution by means of linear combinations.
- 1) $\begin{pmatrix} ?\\ ?\\ ?\\ 0 \end{pmatrix} + \langle \begin{pmatrix} ?\\ -23\\ ?\\ ?\\ ? \end{pmatrix} \end{pmatrix}, \begin{pmatrix} -6\\ ?\\ ?\\ ?\\ ? \end{pmatrix} \rangle$ 2) $\begin{pmatrix} ?\\ ?\\ ?\\ 10 \end{pmatrix} + \langle \begin{pmatrix} 9\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ -6\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ 6\\ ?\\ ? \end{pmatrix} \rangle$ 3) $\begin{pmatrix} 0\\ ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} 16\\ ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} -5\\ ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} \rangle$ 4) $\begin{pmatrix} ?\\ 9\\ ?\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ 3\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} -4\\ ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} \rangle$ 5) $\begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} + \langle \begin{pmatrix} ?\\ 3\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} -4\\ ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ ? \end{pmatrix} \rangle$

Exercise 7

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company:

	Feed of company 1	Feed of company 2	Feed of company 3	Feed of compa
animal flours	2К	өк	6K	5K
vegetable flours	1K	2K	4K	3K
fish flours	6К	4K	21K	17K

The experts of the livestock farm determined

that every week each animal needs the following composition:

animal flours	vegetable flours	fish flours
36K	33K	143K

How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 13.

- 1) Feed 1=3, Feed 2=?, Feed 3=?, Feed 4=?
- 2) Feed 1=?, Feed 2=?, Feed 3=0, Feed 4=?
- 3) Feed 1=?, Feed 2=0, Feed 3=?, Feed 4=?
- 4) Feed 1=?, Feed 2=4, Feed 3=?, Feed 4=?
- 5) Feed 1=?, Feed 2=?, Feed 3=4, Feed 4=?

Exercise 1

Compute the inverse of the matrix	$\left(\begin{array}{cccc} 0 & 1 & -2 & -2 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & -1 \\ -1 & 1 & 0 & 1 \end{array}\right).$
$1) \begin{pmatrix} ? & -6 & -3 & 3 \\ -1 & ? & 1 & -1 \\ 0 & 1 & ? & -1 \\ 0 & -1 & -1 & ? \end{pmatrix} 2) \begin{pmatrix} ? & -5 & 4 \\ 1 & ? & 2 \\ -1 & 2 & ? \\ 1 & -3 & 2 \end{pmatrix}$	
$\left(\begin{array}{ccccc} ? & -1 & -1 & 0 \\ 0 & ? & -1 & 0 \\ 0 & 1 & ? & -1 \\ 0 & 1 & 2 & ? \end{array}\right) 5) \left(\begin{array}{ccccc} ? & -1 & 1 & 1 \\ 0 & ? & 0 & 1 \\ 1 & 0 & ? & 0 \\ 1 & -1 & 0 & ? \end{array}\right)$	$ \begin{array}{c} 6 \end{pmatrix} \begin{pmatrix} ? & -1 & 2 & -1 \\ 3 & ? & 1 & -1 \\ 0 & 1 & ? & 0 \\ 0 & 1 & 1 & ? \end{pmatrix} 7) \begin{pmatrix} ? & -1 & 4 & -1 \\ -1 & ? & -1 & 0 \\ 1 & -1 & ? & -1 \\ 5 & -3 & 13 & ? \end{pmatrix} $

Exercise 2

How many of the vectors (n-tuples)

(-2 1 2 1), (-2 -1 -2 1), (2 1 -2 0), (0 2 1 1), (-4 -2 -4 2), are independent? 1) 1 2) 2 3) 3 4) 4 5) 5

Exercise 3

Check whether the vector (n-tuple) $(-7 \ 2 \ -5)$ is a linear combination of the vectors $(-1 \ 1 \ -2)$, $(-2 \ 2 \ -4)$, 1) Yes 2) No

Exercise 4

Solve for the matrix X in the following equation:

 $\begin{pmatrix} X - \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 3 & -6 \end{pmatrix}$ $1) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 2 \\ * & * \end{pmatrix}$

Exercise 5

Compute the value for parameter a in such a way that the matrix

 $\begin{pmatrix} 0 & 1 & 1 & -2 \\ 1 & 1 & -2 & a \\ 1 & 0 & 2 & 1 \\ 1 & 1 & 2 & 2 \end{pmatrix}$ has determinant -19? 1) 5 2) 3 3) -5 4) 2 5) -3

Find the solution of the linear system

 $\begin{array}{l} x_1 + 4 \; x_2 + 3 \; x_3 + 2 \; x_4 + 3 \; x_5 = = -4 \\ 9 \; x_1 + 6 \; x_2 - x_3 + x_5 = 10 \\ 5 \; x_1 + 5 \; x_2 + x_3 + x_4 + 2 \; x_5 = 3 \end{array}$

taking as parameters, if it is necessary, the

first variables and solving for the last ones (that is to say,

apply Gauss elimination technique selecting columns from right to left)

1)	$ \begin{pmatrix} ?\\ ?\\ -2\\ ?\\ ?\\ ?\\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -8 \end{pmatrix} \right\rangle, \begin{pmatrix} ?\\ ?\\ ?\\ ?\\ -4 \end{pmatrix}, \begin{pmatrix} ?\\ ?\\ ?\\ 0\\ ? \end{pmatrix} \right\rangle $
2)	$ \begin{pmatrix} -1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} 2 \\ 2 \\ 2 \\ 12 \\ 2 \\ 2 \end{pmatrix} , \begin{pmatrix} 2 \\ 2 \\ 2 \\ 5 \\ 2 \\ 5 \\ 2 \end{pmatrix} , \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \\ \mathbf{-1} \\ 2 \end{pmatrix} \right\rangle $
3)	$\left(\begin{array}{c} ?\\ ?\\ ?\\ -5\\ ?\end{array}\right)+\left\langle \left(\begin{array}{c} ?\\ -9\\ ?\\ ?\\ ?\end{array}\right), \left(\begin{array}{c} ?\\ ?\\ ?\\ ?\\ -1\end{array}\right), \left(\begin{array}{c} ?\\ -5\\ ?\\ ?\\ ?\\ ?\end{array}\right), \left(\begin{array}{c} ?\\ -5\\ ?\\ ?\\ ?\\ ?\end{array}\right), \left(\begin{array}{c} ?\\ 4\\ ?\\ ?\\ ?\end{array}\right)\right\rangle$
4)	$\left(\begin{array}{c} ?\\ ?\\ -3\\ -3\\ ?\end{array}\right) + \left\langle \left(\begin{array}{c} ?\\ -10\\ ?\\ ?\\ ?\end{array}\right), \left(\begin{array}{c} ?\\ ?\\ ?\\ 7\\ 7\end{array}\right), \left(\begin{array}{c} ?\\ ?\\ ?\\ -3\\ -3\end{array}\right), \left(\begin{array}{c} ?\\ ?\\ ?\\ 10\\ ?\\ ?\end{array}\right)\right\rangle$
5)	$ \begin{pmatrix} 0 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ -9 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -9 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 1 \end{pmatrix} \rangle $

In a livestock farm, animal feed from several companies is used. Every company produces feed combining different types of flour in different proportions as we can see in the table below which indicates the amount of kilograms of every component that includes the sack of flour of each company: Feed of company 1 Feed of company 2 Feed of company 3 Feed of compa animal flours 3K 6K 7K 4K vegetable flours 10K 17K 25K 14K fish flours 2K 4K 5K 3K The experts of the livestock farm determined that every week each animal needs the following composition: fish flours animal flours vegetable flours 65K 213K 45K How many sacks of every company are necessary to reach the recommended composition taking into account that, to properly store the feed, the total number of sacks for every animal has to be equal to 11. 1) Feed 1=?, Feed 2=2, Feed 3=?, Feed 4=? 2) Feed 1=?, Feed 2=3, Feed 3=?, Feed 4=? 3) Feed 1=?, Feed 2=?, Feed 3=?, Feed 4=0 4) Feed 1=?, Feed 2=?, Feed 3=3, Feed 4=?

5) Feed 1=0, Feed 2=?, Feed 3=?, Feed 4=?