Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 113

Exercise 1

Compute $\int_{3 a}^{3}\left(-15-51 a+34 t+60 a t-30 t^{2}-18 a t^{2}+8 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 5
2) 9
3) 0
4) The rest of the solutions are not correct
5) 6
6) -17

Exercise 2

Compute $\int_{-3}^{3}((6+6 t) \operatorname{Cos}[3-3 t]) d t$

1) -5.80095
2) -3.49642
3) 35.613
4) -2.44829
5) -0.0114881
6) -2.84669

Exercise 3

Compute $\int_{5}^{7}\left(\frac{128}{(-1+2 t)^{4}}\right) d t$

1) -2.44829
2) 0.0195536
3) -2.33236
4) -104081 .
5) -3.49642
6) -2.84669

Exercise 4

Compute $\int_{4}^{7}\left(\frac{15-2 \mathrm{a}-5 \mathrm{t}+\mathrm{at}}{6-5 \mathrm{t}+\mathrm{t}^{2}}\right) \mathrm{dt}$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 1.80569
2) 1.27419
3) 1.02439
4) The rest of the solutions are not correct
5) 1.50609
6) 0.806594

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=3+3 t^{2}+2 t^{3}+2 t^{4}$ millions of euros/year.
If the initial deposit in the investment fund was 90
millions of euros, compute the depositis available after 2 years.

1) $\frac{2637}{10}$ millions of euros $=263.7$ millions of euros
2) $\frac{3518}{5}$ millions of euros $=703.6$ millions of euros
3) $\frac{949}{10}$ millions of euros $=94.9$ millions of euros
4) $\frac{624}{5}$ millions of euros $=124.8$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\left(2+t+3 t^{2}\right) \log (2 t)$ euros.
Compute the average value of shares between month 1 and month 3 (between $t=1$ and $t=3$).

1) $\frac{1}{2}\left(-\frac{123}{4}-\frac{7 \log [2]}{2}+80 \log [8]\right)$ euros $=66.5897$ euros
2) $\frac{1}{3}\left(-\frac{166}{3}-\frac{7 \log [2]}{2}+\frac{295 \log [10]}{2}\right)$ euros $=93.9573$ euros
3) $\frac{1}{2}\left(-\frac{44}{3}-\frac{7 \log [2]}{2}+\frac{75 \log [6]}{2}\right)$ euros $=25.0491$ euros
4) $\frac{1}{3}\left(-\frac{123}{4}-\frac{7 \log [2]}{2}+80 \log [8]\right)$ euros $=44.3931$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=36-18 x-4 x^{2}+2 x^{3}$ and the horizontal axis between the points $x=-2$ and $x=2$.

1) $\frac{757}{6}=126.1667$
2) $\frac{383}{3}=127.6667$
3) $\frac{374}{3}=124.6667$
4) $\frac{368}{3}=122.6667$
5) $\frac{380}{3}=126.6667$
6) $\frac{377}{3}=125.6667$
7) $\frac{392}{3}=130.6667$
8) $\frac{751}{6}=125.1667$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}\left(3+2 t+t^{2}\right)\right) \log (t)$ per-unit.
In the year $t=1$ we deposint in the account 15000
euros. Compute the deposit in the account after (with respect to $t=1$) 4 years.

1) 38289.2506 euros
2) 38329.2506 euros
3) 38269.2506 euros
4) 38359.2506 euros

List of exercises 03-Integration for identity number: 4501

Exercise 1

Compute $\int_{a}^{-4}\left(2-4 a+8 t-6 a t+9 t^{2}-3 a t^{2}+4 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 47
2) 20
3) The rest of the solutions are not correct
4) 30
5) 19
6) 27

Exercise 2

Compute $\int_{-2}^{3}(-(-4-2 t) \operatorname{Sin}[2-2 t]) d t$

1) -12.1631
2) -10.2796
3) -4.94292
4) 14.7752
5) -8.21561
6) -2.75011

Exercise 3

Compute $\int_{4}^{8}\left(\frac{12}{(-5+2 t)^{2}}\right) d t$

1) -6.43314
2) -4.34527
3) 1.45455
4) -3.64908
5) -1304 .
6) -5.43694

Exercise 4

Compute $\int_{3}^{5}\left(\frac{-2 a+2 t+a t}{-2 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -0.381974
2) 0.293426
3) 0.510826
4) The rest of the solutions are not correct
5) 0.406126
6) 0.551726

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=2+3 t+2 t^{2}+2 t^{3}+3 t^{4}$ millions of euros/year.
If the initial deposit in the investment fund was 90 millions of euros, compute the depositis available after 1 year.

1) $\frac{1569}{5}$ millions of euros $=313.8$ millions of euros
2) $\frac{13606}{15}$ millions of euros $=907.0667$ millions of euros
3) $\frac{1429}{15}$ millions of euros $=95.2667$ millions of euros
4) $\frac{1988}{15}$ millions of euros $=132.5333$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(6+t) e^{-1+3 t}$ euros.
Compute the average value of the shares along the first
3 months of the year (between $t=0$ and $t=3$).

1) $\frac{1}{3}\left(-\frac{17}{9 e}+\frac{20 e^{2}}{9}\right)$ euros $=5.2417$ euros
2) $\frac{1}{3}\left(-\frac{17}{9 e}+\frac{26 e^{8}}{9}\right)$ euros $=2870.3205$ euros
3) $\frac{1}{3}\left(-\frac{17}{9 e}+\frac{23 e^{5}}{9}\right)$ euros $=126.1944$ euros
4) $\frac{1}{3}\left(\frac{14}{9 e^{4}}-\frac{17}{9 \mathbb{e}}\right)$ euros $=-0.2221$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$2 x-x^{2}$ and the horizontal axis between the points $x=-3$ and $x=0$.

1) $\frac{41}{2}=20.5$
2) $\frac{45}{2}=22.5$
3) 20
4) 22
5) 18
6) $\frac{43}{2}=21.5$
7) $\frac{39}{2}=19.5$
8) 21

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{8}(2+2 t)\right) e^{-3+2 t}$ per-unit.
The initial deposit in the account is 15000 euros. Compute the deposit after 1 year.

1) 16021.249 euros
2) 16091.249 euros
3) 16101.249 euros
4) 16051.249 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03 -Integration for identity number: 187462

Exercise 1

Compute $\int_{-a}^{-3}\left(-4-9 a-18 t+15 a t^{2}+20 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter
a. Compute the derivative of such a formula at the point 0 .

1) -114
2) The rest of the solutions are not correct
3) -119
4) - 104
5) -127
6) -117

Exercise 2

Compute $\int_{-2}^{2}\left(-e^{1+t}\right) d t$

1) -19.7177
2) -90. 3239
3) -82.282
4) -95.803
5) -40.9068
6) -40.9068

Exercise 3

Compute $\int_{-6}^{-2}\left(\frac{63}{(-4+3 t)^{2}}\right) d t$

1) -5.56547
2) 1.14545
3) -4.77999
4) -5.24717
5) -4.7442
6) -9648.

Exercise 4

Compute $\int_{2}^{3}\left(\frac{2-5 a-2 t-5 a t}{-1+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) -3.10354
3) -3.58014
4) -4.04204
5) -3.66514
6) -4.13744

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(4+4 t) \log (5 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 50
millions euros, compute the deposit available after (with respect to $t=1$) 2 years.

1) $23-6 \log [5]+48 \log [20]$ millions of euros $=157.1385$ millions of euros
2) $10-6 \log [5]+70 \log [25]$ millions of euros $=225.6647$ millions of euros
3) $54-6 \log [5]+30 \log [15]$ millions of euros $=125.5849$ millions of euros
4) $34-6 \log [5]+30 \log [15]$ millions of euros $=105.5849$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(-4+3 t) \cos (8 t)$ euros.
Compute the average value of the shares along the first
2π months of the year (between $t=0$ and $t=2 \pi$).

1) - 70 euros
2) 10 euros
3) 0 euros
4) 30 euros

Exercise 7

Compute the area enclosed by the function $f(x)=6-3 x-6 x^{2}+3 x^{3}$ and the horizontal axis between the points $x=-5$ and $x=2$.

1) $\frac{2661}{4}=665.25$
2) $\frac{2671}{4}=667.75$
3) $\frac{2651}{4}=662.75$
4) $\frac{2673}{4}=668.25$
5) $\frac{2597}{4}=649.25$
6) $\frac{2669}{4}=667.25$
7) $\frac{2587}{4}=646.75$
8) $\frac{2667}{4}=666.75$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}(-1+8 t)\right) \cos (4 t)$ per-unit.
The initial deposit in the account is 11000 euros. Compute the deposit after 2π years.

1) 11000 euros
2) 10940 euros
3) 11060 euros
4) 10910 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03 -Integration for identity number: 550273

Exercise 1

Compute $\int_{a}^{5}\left(3 a-6 t+8 a t-12 t^{2}-15 a t^{2}+20 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -513
2) - 510
3) The rest of the solutions are not correct
4) - 511
5) -505
6) -503

Exercise 2

Compute $\int_{1}^{5}((-4+4 t) \log [2 t]) d t$

1) 62.4638
2) 194.774
3) -173.278
4) -241.857
5) 70.4638
6) -169.36

Exercise 3

Compute $\int_{1}^{7}\left(\frac{448}{(4+4 t)^{3}}\right) d t$

1) -1.93318
2) -522240 .
3) -3.87195
4) -2.77406
5) 0.820313
6) -2.71134

Exercise 4

Compute $\int_{5}^{8}\left(\frac{5-9 a-5 t+3 a t}{3-4 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) 1.13155
3) 1.16815
4) 1.24745
5) 1.14395
6) 2.17615

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=(4+t) e^{2+t}$ millions of euros/year.

If the initial deposit in the investment fund was 60 millions of euros, compute the depositis available after 3 years.

1) $60-3 e^{2}+4 e^{3}$ millions of euros $=118.175$ millions of euros
2) $60+2 e-3 e^{2}$ millions of euros $=43.2694$ millions of euros
3) $60-3 e^{2}+6 e^{5}$ millions of euros $=928.3118$ millions of euros
4) $60-3 e^{2}+5 e^{4}$ millions of euros $=310.8236$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(-7-6 t) \cos (7 t)$ euros.
Compute the average value of the shares along the first
π months of the year (between $t=0$ and $t=\pi$).

1) 0 euros
2) $70+\frac{12}{49 \pi}$ euros $=70.078$ euros
3) $90+\frac{12}{49 \pi}$ euros $=90.078$ euros
4) $\frac{12}{49 \pi}$ euros $=0.078$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-18+15 x+6 x^{2}-3 x^{3}$ and the horizontal axis between the points $x=-2$ and $x=2$.

1) 56
2) $\frac{117}{2}=58.5$
3) $\frac{113}{2}=56.5$
4) $\frac{115}{2}=57.5$
5) 57
6) 40
7) $\frac{109}{2}=54.5$
8) 58

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}(-3-5 t)\right) \cos (7 t)$ per-unit.
The initial deposit in the account is 9000 euros. Compute the deposit after 5π years.

1) 9108.3861 euros
2) 9088.3861 euros
3) 9018.3861 euros
4) 8988.3861 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 2959749

Exercise 1

Compute $\int_{a}^{-5}\left(-4-a+2 t-2 a t+3 t^{2}+12 a t^{2}-16 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) -530
3) -532
4) - 516
5) -533
6) -529

Exercise 2

Compute $\int_{0}^{1}\left(e^{1-t}\left(3-3 t-2 t^{2}\right)\right) d t$

1) -8.73151
2) -10.6212
3) 0.833333
4) 2.12687
5) -0.833333
6) -9.26058

Exercise 3

Compute $\int_{-6}^{-3}\left(\frac{2}{t^{5}}\right) d t$

1) 11481.8
2) -0.00578704
3) -4.10533
4) -4.99382
5) -4.35408
6) -3.48321

Exercise 4

Compute $\int_{0}^{1}\left(\frac{5+10 a+5 t+5 a t}{2+3 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 3.31864
2) The rest of the solutions are not correct
3) 2.47784
4) 2.82494
5) 3.13554
6) 3.46574

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(1+t) \log (4 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 60
millions euros, compute the deposit available after (with respect to $t=1$) 4 years.

1) $50-\frac{3 \log [4]}{2}+\frac{35 \log [20]}{2}$ millions of euros $=100.3459$ millions of euros
2) $\frac{213}{4}-\frac{3 \log [4]}{2}+12 \log [16]$ millions of euros $=84.4416$ millions of euros
3) $90-\frac{3 \log [4]}{2}+\frac{35 \log [20]}{2}$ millions of euros $=140.3459$ millions of euros
4) $\frac{185}{4}-\frac{3 \log [4]}{2}+24 \log [24]$ millions of euros $=120.4439$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\cos (-3+9 t)$ euros.
Compute the average value of the shares along the first
3π months of the year (between $t=0$ and $t=3 \pi$).

1) $\frac{2 \operatorname{Sin}[3]}{27 \pi}$ euros $=0.0033$ euros
2) $50+\frac{2 \operatorname{Sin}[3]}{27 \pi}$ euros $=50.0033$ euros
3) $-60+\frac{2 \operatorname{Sin}[3]}{27 \pi}$ euros $=-59.9967$ euros
4) $-80+\frac{2 \operatorname{Sin}[3]}{27 \pi}$ euros $=-79.9967$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-12-12 x+3 x^{2}+3 x^{3}$ and the horizontal axis between the points $x=-5$ and $x=2$.

1) $\frac{1127}{4}=281.75$
2) $\frac{1141}{4}=285.25$
3) $\frac{1151}{4}=287.75$
4) $\frac{871}{4}=217.75$
5) $\frac{857}{4}=214.25$
6) $\frac{1155}{4}=288.75$
7) $\frac{1149}{4}=287.25$
8) $\frac{1153}{4}=288.25$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{10} \cos (-3+t)$ per-unit.
The initial deposit in the account is 8000 euros. Compute the deposit after 3π years.

1) 8189.0086 euros
2) 8229.0086 euros
3) 8169.0086 euros
4) 8199.0086 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 3180328

Exercise 1

Compute $\int_{a}^{1}\left(-1-4 a+8 t-6 a t+9 t^{2}+6 a t^{2}-8 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) - 7
2) -10
3) -4
4) The rest of the solutions are not correct
5) -18
6) -5

Exercise 2

Compute $\int_{3}^{6}(-2 \log [t]) d t$

1) -14.9094
2) -8.90944
3) -55.2317
4) -40.671
5) -38.4833
6) -42.0945

Exercise 3

Compute $\int_{-9}^{-6}\left(\frac{40}{(3+2 t)^{3}}\right) d t$

1) -4.7247
2) -3.88617
3) -4.56493
4) -0.0790123
5) 22032 .
6) -4.31938

Exercise 4

Compute $\int_{4}^{6}\left(\frac{-6 \mathrm{a}+5 \mathrm{t}+2 \mathrm{at}}{-3 \mathrm{t}+\mathrm{t}^{2}}\right) \mathrm{dt}$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 1.03823
2) 0.88573
3) The rest of the solutions are not correct
4) 0.81093
5) 1.00223
6) 0.98673

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=20 e^{3+t}$ millions of euros/year.
If the initial deposit in the investment fund was 90 millions of euros, compute the depositis available after 3 years.

1) $90-20 e^{3}+20 e^{4}$ millions of euros $=780.2523$ millions of euros
2) $90+20 e^{2}-20 e^{3}$ millions of euros $=-163.9296$ millions of euros
3) $90-20 e^{3}+20 e^{5}$ millions of euros $=2656.5524$ millions of euros
4) $90-20 e^{3}+20 e^{6}$ millions of euros $=7756.8651$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(9+8 t) e^{2+2 t}$ euros.
Compute the average value of the shares along the first
9 months of the year (between $t=0$ and $t=9$).

1) $\frac{1}{9}\left(-\frac{5 e^{2}}{2}+\frac{77 e^{2 \theta}}{2}\right)$ euros $=2.0754 \times 10^{9}$ euros
2) $\frac{1}{9}\left(-\frac{5 e^{2}}{2}+\frac{13 e^{4}}{2}\right)$ euros $=37.3795$ euros
3) $\frac{1}{9}\left(-\frac{3}{2}-\frac{5 e^{2}}{2}\right)$ euros $=-2.2192$ euros
4) $\frac{1}{9}\left(-\frac{5 e^{2}}{2}+\frac{21 e^{6}}{2}\right)$ euros $=468.6144$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$-9 x-6 x^{2}+3 x^{3}$ and the horizontal axis between the points $x=1$ and $x=5$.

1) 168
2) $\frac{343}{2}=171.5$
3) 112
4) 172
5) $\frac{339}{2}=169.5$
6) $\frac{341}{2}=170.5$
7) 170
8) 171

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\left(\frac{-2+t}{1628}\right) e^{2+3 t}$ per-unit.
The initial deposit in the account is 7000 euros. Compute the deposit after 1 year.

1) 6765.8226 euros
2) 6725.8226 euros
3) 6835.8226 euros
4) 6745.8226 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 6548030

Exercise 1

Compute $\int_{3 a}^{0}\left(9 a-6 t-24 a t+12 t^{2}-27 a t^{2}+12 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -4
2) -8
3) 0
4) - 20
5) The rest of the solutions are not correct
6) -14

Exercise 2

Compute $\int_{2}^{3}((-1-3 t) \operatorname{Cos}[1+t]) d t$

1) -34.9675
2) -34.9442
3) 7.54682
4) 13.6162
5) 2.86518
6) -35.5057

Exercise 3

Compute $\int_{-9}^{-3}\left(\frac{96}{(1+4 t)^{2}}\right) d t$

1) -41544 .
2) -6.85058
3) -6.92744
4) -7.03876
5) -6.93207
6) 1.4961

Exercise 4

Compute $\int_{2}^{3}\left(\frac{-3+15 a+3 t+5 a t}{-3+2 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter
a. Compute the derivative of such a formula at the point 0 .

1) 4.13754
2) 2.96524
3) The rest of the solutions are not correct
4) 3.46574
5) 2.49244
6) 3.69634

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=\left(1+4 t+t^{2}\right) \log (3 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 80 millions euros, compute the deposit available after (with respect to $t=1$) 3 years.

1) $\frac{145}{9}-\frac{10 \log [3]}{3}+150 \log [18]$ millions of euros $=446.0048$ millions of euros
2) $\frac{344}{9}-\frac{10 \log [3]}{3}+\frac{290 \log [15]}{3}$ millions of euros $=296.3384$ millions of euros
3) $55-\frac{10 \log [3]}{3}+\frac{172 \log [12]}{3}$ millions of euros $=193.8059$ millions of euros
4) $45-\frac{10 \log [3]}{3}+\frac{172 \log [12]}{3}$ millions of euros $=183.8059$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(-7-5 t) \cos (9 t)$ euros.
Compute the average value of the shares along the first
3π months of the year (between $t=0$ and $t=3 \pi$).

1) 0 euros
2) $\frac{10}{243 \pi}$ euros $=0.0131$ euros
3) $-90+\frac{10}{243 \pi}$ euros $=-89.9869$ euros
4) $50+\frac{10}{243 \pi}$ euros $=50.0131$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-18+18 x+2 x^{2}-2 x^{3}$ and the horizontal axis between the points $x=-3$ and $x=1$.

1) $\frac{521}{6}=86.8333$
2) $\frac{533}{6}=88.8333$
3) $\frac{265}{3}=88.3333$
4) $\frac{268}{3}=89.3333$
5) $\frac{256}{3}=85.3333$
6) $\frac{527}{6}=87.8333$
7) $\frac{539}{6}=89.8333$
8) $\frac{262}{3}=87.3333$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}(-1-7 t)\right) \cos (3 t)$ per-unit.
The initial deposit in the account is 18000 euros. Compute the deposit after 5π years.

1) 18312.1891 euros
2) 18292.1891 euros
3) 18282.1891 euros
4) 18222.1891 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 7476889

Exercise 1

Compute $\int_{-3 a}^{-4}\left(10-27 a-18 t+36 a t+18 t^{2}-18 a t^{2}-8 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 805
2) The rest of the solutions are not correct
3) 810
4) 809
5) 811
6) 825

Exercise 2

Compute $\int_{0}^{1}\left(-\left(9-27 t-27 t^{2}\right) \operatorname{Sin}[2-3 t]\right) d t$

1) -22.8435
2) -19.447
3) 2.43136
4) -22.5668
5) -11.3599
6) -5.35794

Exercise 3

Compute $\int_{0}^{5}\left(-\frac{64}{(-5-2 t)^{5}}\right) d t$

1) -3.62357
2) -2.84375×10^{6}
3) -3.62957
4) -4.21184
5) 0.012642
6) -4.26349

Exercise 4

Compute $\int_{7}^{8}\left(\frac{-6-15 a+2 t-5 a t}{-9+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter
a. Compute the derivative of such a formula at the point 0 .

1) -1.37062
2) -1.45172
3) -2.04852
4) -1.54482
5) The rest of the solutions are not correct
6) -1.57132

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(2+t) \log (2 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 50
millions euros, compute the deposit available after (with respect to $t=1$) 2 years.

1) $44-\frac{5 \log [2]}{2}+\frac{21 \log [6]}{2}$ millions of euros $=61.0806$ millions of euros
2) $36-\frac{5 \log [2]}{2}+\frac{45 \log [10]}{2}$ millions of euros $=86.0753$ millions of euros
3) $134-\frac{5 \log [2]}{2}+\frac{21 \log [6]}{2}$ millions of euros $=151.0806$ millions of euros
4) $\frac{161}{4}-\frac{5 \log [2]}{2}+16 \log [8]$ millions of euros $=71.7882$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\left(4+2 t+4 t^{2}\right) \log (5 t)$ euros.
Compute the average value of shares between month 1 and month 3 (between $t=1$ and $t=3$).

1) $\frac{1}{3}\left(-\frac{95}{2}-\frac{19 \log [5]}{3}+\frac{352 \log [20]}{3}\right)$ euros $=97.9354$ euros
2) $\frac{1}{2}\left(-\frac{95}{2}-\frac{19 \log [5]}{3}+\frac{352 \log [20]}{3}\right)$ euros $=146.9031$ euros
3) $\frac{1}{3}\left(-\frac{748}{9}-\frac{19 \log [5]}{3}+\frac{635 \log [25]}{3}\right)$ euros $=196.0082$ euros
4) $\frac{1}{2}\left(-\frac{212}{9}-\frac{19 \log [5]}{3}+57 \log [15]\right)$ euros $=60.3051$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$-9 x+x^{3}$ and the horizontal axis between the points $x=0$ and $x=3$.

1) $\frac{93}{4}=23.25$
2) $\frac{91}{4}=22.75$
3) $\frac{89}{4}=22.25$
4) $\frac{81}{4}=20.25$
5) $\frac{95}{4}=23.75$
6) $\frac{97}{4}=24.25$
7) $\frac{87}{4}=21.75$
8) $\frac{99}{4}=24.75$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{2+t}{100}\right) \log (2 t)$ per-unit.
In the year $t=1$ we deposint in the account 4000 euros. Compute the deposit in the account after (with respect to $t=1$) 4 years.

1) 5737.6363 euros
2) 5787.6363 euros
3) 5817.6363 euros
4) 5797.6363 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 7511947

Exercise 1

Compute $\int_{-a}^{4}\left(1-3 a-6 t+8 a t+12 t^{2}-6 a t^{2}-8 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -84
2) The rest of the solutions are not correct
3) -71
4) -66
5) -75
6) -67

Exercise 2

Compute $\int_{-2}^{2}(-\operatorname{Cos}[1-3 t]) d t$

1) 1.07727
2) -2.17527
3) -4.37025
4) -2.07513
5) 0.100646
6) -3.3991

Exercise 3

Compute $\int_{-4}^{-1}\left(\frac{1250}{(2-5 t)^{4}}\right) d t$

1) -4.37025
2) -1.84491
3) -3.3991
4) -2.17527
5) 1.71228×10^{6}
6) 0.235128

Exercise 4

Compute $\int_{3}^{4}\left(\frac{15+5 t+2 a t}{3 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -0.200499
2) -0.683699
3) -0.0340986
4) -0.0900986
5) The rest of the solutions are not correct
6) 0.308301

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=10 e^{-1+2 t}$ millions of euros/year.
If the initial deposit in the investment fund was 20
millions of euros, compute the depositis available after 1 year.

1) $20+\frac{5}{e^{3}}-\frac{5}{e}$ millions of euros $=18.4095$ millions of euros
2) $20-\frac{5}{e}+5 e$ millions of euros $=31.752$ millions of euros
3) $20-\frac{5}{e}+5 e^{3}$ millions of euros $=118.5883$ millions of euros
4) $20-\frac{5}{e}+5 e^{5}$ millions of euros $=760.2264$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=3+2 t+3 t^{2}+3 t^{3}+t^{4}$ euros.
Compute the average value of the shares along the first
4 months of the year (between $t=0$ and $t=4$).

1) $\frac{611}{5}$ euros $=122.2$ euros
2) $\frac{3087}{80}$ euros $=38.5875$ euros
3) $\frac{91}{10}$ euros $=9.1$ euros
4) $\frac{119}{80}$ euros $=1.4875$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$ $-6 x-2 x^{2}$ and the horizontal axis between the points $x=1$ and $x=4$.

1) $\frac{177}{2}=88.5$
2) 87
3) 92
4) 89
5) $\frac{183}{2}=91.5$
6) $\frac{179}{2}=89.5$
7) 91
8) 90

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{100}\left(3+2 t+3 t^{2}+3 t^{3}\right)$ per-unit
The initial deposit in the account is 14000 euros. Compute the deposit after 1 year.

1) 14828.5938 euros
2) 14868.5938 euros
3) 14818.5938 euros
4) 14898.5938 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 7803104

Exercise 1

Compute $\int_{-3 a}^{2}\left(18 a+12 t-66 a t-33 t^{2}+36 a t^{2}+16 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 6
2) 0
3) 8
4) 5
5) The rest of the solutions are not correct
6) -11

Exercise 2

Compute $\int_{-1}^{1}\left(e^{3+t}(-1-2 t)\right) d t$

1) -109.196
2) -337.575
3) -109.196
4) -76.7653
5) -338.858
6) -352.745

Exercise 3

Compute $\int_{-2}^{0}\left(\frac{135}{(-2+3 t)^{3}}\right) d t$

1) -24.232
2) -5.27344
3) -23.278
4) -21.2668
5) -23.1899
6) 2040 .

Exercise 4

Compute $\int_{2}^{3}\left(\frac{-3+3 t-4 a t}{-t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -2.77259
2) The rest of the solutions are not correct
3) -2.05849
4) -2.21349
5) -2.46739
6) -3.09459

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(9+8 t)(\cos (2 \pi t)+1)$ millions of euros/year.
If the initial deposit in the investment fund was 40
millions of euros, compute the depositis available after 3 years.

1) 74 millions of euros
2) 103 millions of euros
3) 35 millions of euros
4) 53 millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(5-7 t) \cos (4 t)$ euros.
Compute the average value of the shares along the first
2π months of the year (between $t=0$ and $t=2 \pi$).

1) 30 euros
2) - 30 euros
3) - 80 euros
4) 0 euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$-2 x+x^{2}+x^{3}$ and the horizontal axis between the points $x=-2$ and $x=5$.

1) $\frac{2147}{12}=178.9167$
2) $\frac{681}{4}=170.25$
3) $\frac{2153}{12}=179.4167$
4) $\frac{2159}{12}=179.9167$
5) $\frac{2165}{12}=180.4167$
6) $\frac{2117}{12}=176.4167$
7) $\frac{2135}{12}=177.9167$
8) $\frac{2141}{12}=178.4167$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}(-8-t)\right) \cos (6 t)$ per-unit.
The initial deposit in the account is 13000 euros. Compute the deposit after 5π years.

1) 12940 euros
2) 12960 euros
3) 13000 euros
4) 13010 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 8623226

Exercise 1

Compute $\int_{a}^{-2}\left(2 a-4 t+6 a t-9 t^{2}-15 a t^{2}+20 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) 55
3) 40
4) 29
5) 36
6) 48

Exercise 2

Compute $\int_{0}^{2}((6-2 t) \operatorname{Cos}[2+2 t]) d t$

1) -1.11766
2) -12.5985
3) -14.3822
4) -3.69547
5) 7.68136
6) -12.6968

Exercise 3

Compute $\int_{-8}^{-3}\left(\frac{128}{(2+2 t)^{5}}\right) d t$

1) -3.43579
2) -3.40918
3) 1.88136×10^{6}
4) -3.20991
5) -3.89184
6) -0.0620835

Exercise 4

Compute $\int_{1}^{3}\left(\frac{4-2 \mathrm{a}+2 \mathrm{t}-2 \mathrm{at}}{2+3 \mathrm{t}+\mathrm{t}^{2}}\right) \mathrm{dt}$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -1.14125
2) -0.945151
3) -0.947351
4) The rest of the solutions are not correct
5) -1.57415
6) -1.02165

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=20 e^{2+3 t}$ millions of euros/year.

If the initial deposit in the investment fund was 90 millions of euros, compute the depositis available after 3 years.

1) $90-\frac{20 e^{2}}{3}+\frac{20 e^{5}}{3}$ millions of euros $=1030.1607$ millions of euros
2) $90-\frac{20 e^{2}}{3}+\frac{20 e^{11}}{3}$ millions of euros $=399201.6844$ millions of euros
3) $90-\frac{20 e^{2}}{3}+\frac{20 e^{8}}{3}$ millions of euros $=19913.7929$ millions of euros
4) $90+\frac{20}{3 e}-\frac{20 e^{2}}{3}$ millions of euros $=43.1922$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=30 e^{3+3 t}$ euros.
Compute the average value of the shares along the first
4 months of the year (between $t=0$ and $t=4$).

1) $\frac{1}{4}\left(-10 e^{3}+10 e^{6}\right)$ euros $=958.3581$ euros
2) $\frac{1}{4}\left(-10 e^{3}+10 e^{15}\right)$ euros $=8.1725 \times 10^{6}$ euros
3) $\frac{1}{4}\left(10-10 e^{3}\right)$ euros $=-47.7138$ euros
4) $\frac{1}{4}\left(-10 e^{3}+10 e^{9}\right)$ euros $=20207.496$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$4+6 x+2 x^{2}$ and the horizontal axis between the points $x=1$ and $x=5$.

1) $\frac{524}{3}=174.6667$
2) $\frac{512}{3}=170.6667$
3) $\frac{527}{3}=175.6667$
4) $\frac{1051}{6}=175.1667$
5) $\frac{518}{3}=172.6667$
6) $\frac{1033}{6}=172.1667$
7) $\frac{1039}{6}=173.1667$
8) $\frac{521}{3}=173.6667$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{e^{-1+t}}{15}$ per-unit.
The initial deposit in the account is 11000 euros. Compute the deposit after 1 year.

1) 11543.4612 euros
2) 11473.4612 euros
3) 11503.4612 euros
4) 11463.4612 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 8792788

Exercise 1

Compute $\int_{-3 a}^{0}\left(6-33 a-22 t-72 a t-36 t^{2}+45 a t^{2}+20 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 10
2) 27
3) 0
4) -2
5) 18
6) The rest of the solutions are not correct

Exercise 2

Compute $\int_{1}^{3}((-4-2 t) \operatorname{Cos}[2-2 t]) d t$

1) -20.9888
2) 7.94643
3) 4.61083
4) -21.9565
5) -22.6046
6) 18.7265

Exercise 3

Compute $\int_{-7}^{-2}\left(\frac{81}{(1-3 t)^{4}}\right) d t$

1) 0.0253938
2) -4.76194
3) -4.08155
4) -4.55205
5) -4.9025
6) 1.71228×10^{6}

Exercise 4

Compute $\int_{2}^{3}\left(\frac{2+t+5 a t}{2 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) 1.09622
3) 0.734018
4) 0.565118
5) 1.11572
6) 1.02362

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=\left(1+t+4 t^{2}\right) \log (2 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 40
millions euros, compute the deposit available after (with respect to $t=1$) 4 years.

1) $-\frac{2495}{36}-\frac{17 \log [2]}{6}+312 \log [12]$ millions of euros $=704.0214$ millions of euros
2) $-\frac{226}{9}-\frac{17 \log [2]}{6}+\frac{1105 \log [10]}{6}$ millions of euros $=396.9844$ millions of euros
3) $\frac{314}{9}-\frac{17 \log [2]}{6}+\frac{1105 \log [10]}{6}$ millions of euros $=456.9844$ millions of euros
4) $\frac{21}{4}-\frac{17 \log [2]}{6}+\frac{292 \log [8]}{3}$ millions of euros $=205.6851$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=30 e^{3+3 t}$ euros .
Compute the average value of the shares along the first
8 months of the year (between $t=0$ and $t=8$).

1) $\frac{1}{8}\left(10-10 e^{3}\right)$ euros $=-23.8569$ euros
2) $\frac{1}{8}\left(-10 e^{3}+10 e^{27}\right)$ euros $=6.6506 \times 10^{11}$ euros
3) $\frac{1}{8}\left(-10 e^{3}+10 e^{9}\right)$ euros $=10103.748$ euros
4) $\frac{1}{8}\left(-10 e^{3}+10 e^{6}\right)$ euros $=479.1791$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-4 x-6 x^{2}-2 x^{3}$ and the horizontal axis between the points $x=-4$ and $x=-1$.

1) $\frac{75}{2}=37.5$
2) $\frac{77}{2}=38.5$
3) $\frac{69}{2}=34.5$
4) 35
5) $\frac{65}{2}=32.5$
6) 36
7) $\frac{71}{2}=35.5$
8) $\frac{73}{2}=36.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{14} e^{-6+2 t}$ per-unit.
The initial deposit in the account is 14000 euros. Compute the deposit after 3 years.

1) 14507.7514 euros
2) 14508.9857 euros
3) 14497.7514 euros
4) 14517.7514 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 9214549

Exercise 1

Compute $\int_{-3 a}^{3}\left(-15-60 a-40 t+42 a t+21 t^{2}+36 a t^{2}+16 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 277
2) The rest of the solutions are not correct
3) 284
4) 278
5) 288
6) 270

Exercise 2

Compute $\int_{-1}^{0}(-2 \operatorname{Cos}[3+2 t]) d t$

1) -4.05317
2) -4.56856
3) 0.700351
4) -1.0806
5) -0.841471
6) -4.24482

Exercise 3

Compute $\int_{-8}^{-2}\left(-\frac{3}{-1-3 t}\right) d t$
$\ldots \mathrm{N}$: Internal precision limit $\$$ MaxExtraPrecision $=50$. reached while evaluating $\log \left[\frac{23}{5}\right]+\log [5]-\log [23]$.

1) -4.32298
2) -6.97188
3) -6.18536
4) -5.23848
5) -6.47783
6) -1.52606

Exercise 4

Compute $\int_{1}^{2}\left(\frac{2+\mathrm{t}+\mathrm{at}}{2 \mathrm{t}+\mathrm{t}^{2}}\right) d \mathrm{t}$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -0.577818
2) 0.209982
3) The rest of the solutions are not correct
4) -0.435518
5) 0.211482
6) 0.287682

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=2+3 t+t^{3}$ millions of euros/year.
If the initial deposit in the investment fund was 40
millions of euros, compute the depositis available after 1 year.

1) $\frac{175}{4}$ millions of euros $=43.75$ millions of euros
2) $\mathbf{1 3 6}$ millions of euros
3) $\frac{319}{4}$ millions of euros $=79.75$ millions of euros
4) 54 millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=10 e^{-1+2 t}$ euros.
Compute the average value of the shares along the first
8 months of the year (between $t=0$ and $t=8$).

1) $\frac{1}{8}\left(-\frac{5}{e}+5 e^{3}\right)$ euros $=12.3235$ euros
2) $\frac{1}{8}\left(-\frac{5}{e}+5 e^{15}\right)$ euros $=2.0431 \times 10^{6}$ euros
3) $\frac{1}{8}\left(\frac{5}{e^{3}}-\frac{5}{e}\right)$ euros $=-0.1988$ euros
4) $\frac{1}{8}\left(-\frac{5}{e}+5 e\right)$ euros $=1.469$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-4 x-6 x^{2}-2 x^{3}$ and the horizontal axis between the points $x=-2$ and $x=3$.

1) 115
2) 116
3) $\frac{233}{2}=116.5$
4) $\frac{231}{2}=115.5$
5) $\frac{235}{2}=117.5$
6) $\frac{227}{2}=113.5$
7) 117
8) $\frac{223}{2}=111.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\frac{1}{8} e^{-9+3 t}$ per-unit.

The initial deposit in the account is 6000 euros. Compute the deposit after 3 years.

1) 6305.2493 euros
2) 6255.2493 euros
3) 6235.2493 euros
4) 6295.2493 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 9810258

Exercise 1

Compute $\int_{2 a}^{-5}\left(15+20 a-20 t+80 a t-60 t^{2}+30 a t^{2}-20 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -375
2) - 367
3) -398
4) -372
5) -380
6) The rest of the solutions are not correct

Exercise 2

Compute $\int_{0}^{1}\left(e^{-t}\left(3-3 t+2 t^{2}\right)\right) d t$

1) -5.38867
2) -4.72792
3) 1.42484
4) -4.93779
5) -0.797072
6) -5.31616

Exercise 3

Compute $\int_{-8}^{-7}\left(-\frac{7}{-5-\mathrm{t}}\right) \mathrm{dt}$

1) -0.405465
2) -9.83597
3) -9.4179
4) -2.83826
5) -10.5897
6) -10.7341

Exercise 4

Compute $\int_{3}^{4}\left(\frac{4-8 a+4 t+4 a t}{-2-t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 1.15857
2) 1.11567
3) 0.274774
4) 0.892574
5) The rest of the solutions are not correct
6) 0.744874

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(6+7 t)(\sin (2 \pi t)+1)$ millions of euros/year.
If the initial deposit in the investment fund was 70
millions of euros, compute the depositis available after 4 years.

1) $\frac{135}{2}+\frac{7}{2 \pi}$ millions of euros $=68.6141$ millions of euros
2) $\frac{159}{2}-\frac{7}{2 \pi}$ millions of euros $=78.3859$ millions of euros
3) $150-\frac{14}{\pi}$ millions of euros $=145.5437$ millions of euros
4) $96-\frac{7}{\pi}$ millions of euros $=93.7718$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\sin (4+4 t)$ euros.
Compute the average value of the shares along the first
3π months of the year (between $t=0$ and $t=3 \pi$).

1) $20+\frac{\frac{\cos [4]}{4}-\frac{1}{4} \operatorname{Cos}[4(1+3 \pi)]}{3 \pi}$ euros $=20$. euros
2) $\frac{\frac{\cos [4]}{4}-\frac{1}{4} \operatorname{Cos}[4(1+3 \pi)]}{3 \pi}$ euros $=0$. euros
3) $-30+\frac{\frac{\cos [4]}{4}-\frac{1}{4} \operatorname{Cos}[4(1+3 \pi)]}{3 \pi}$ euros $=-30$. euros
4) $50+\frac{\frac{\cos [4]}{4}-\frac{1}{4} \operatorname{Cos}[4(1+3 \pi)]}{3 \pi}$ euros $=50$. euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$-4-2 x+2 x^{2}$ and the horizontal axis between the points $x=-5$ and $x=0$.

1) $\frac{193}{2}=96.5$
2) 96
3) $\frac{265}{3}=88.3333$
4) 98
5) 97
6) $\frac{191}{2}=95.5$
7) 93
8) 95

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\frac{1}{10} \sin (-3+6 t)$ per-unit.

The initial deposit in the account is 9000 euros. Compute the deposit after 3π years.

1) 9080 euros
2) 9000 euros
3) 9090 euros
4) 9020 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 12865294

Exercise 1

Compute $\int_{3 a}^{-1}\left(3 a-2 t+24 a t-12 t^{2}+27 a t^{2}-12 t^{3}\right) d t$

- The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -20
2) - 19
3) The rest of the solutions are not correct
4) - 12
5) 0
6) -16

Exercise 2

Compute $\int_{-2}^{3}((3-t) \operatorname{Cos}[1+t]) d t$

1) -10.1374
2) -15.3907
3) 1.38102
4) 5.4013
5) -19.766
6) -14.2722

Exercise 3

Compute $\int_{7}^{8}\left(\frac{6}{(2-\mathrm{t})^{2}}\right) d \mathrm{t}$

1) -2.52812
2) -2.84944
3) -2.64236
4) 91 .
5) -3.65949
6) 0.2

Exercise 4

Compute $\int_{5}^{7}\left(\frac{4+9 a+4 t-3 a t}{-3-2 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -1.59785
2) The rest of the solutions are not correct
3) -1.38325
4) -1.86115
5) -1.72615
6) -0.863046

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=(9+8 t) e^{-1+3 t}$ millions of euros/year.

If the initial deposit in the investment fund was 60 millions of euros, compute the depositis available after 2 years.

1) $60-\frac{19}{9 e}+\frac{67 e^{5}}{9}$ millions of euros $=1164.0769$ millions of euros
2) $60-\frac{19}{9 e}+\frac{91 e^{8}}{9}$ millions of euros $=30200.0208$ millions of euros
3) $60-\frac{19}{9 e}+\frac{43 e^{2}}{9}$ millions of euros $=94.5266$ millions of euros
4) $60-\frac{5}{9 e^{4}}-\frac{19}{9 \mathbb{e}}$ millions of euros $=59.2132$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\cos (5+5 t)$ euros .
Compute the average value of the shares along the first
π months of the year (between $t=0$ and $t=\pi$).

1) $60+\frac{-\frac{\sin [5]}{5}+\frac{1}{5} \operatorname{Sin}[5(1+\pi)]}{\pi}$ euros $=60.1221$ euros
2) $90+\frac{-\frac{\sin [5]}{5}+\frac{1}{5} \operatorname{Sin}[5(1+\pi)]}{\pi}$ euros $=90.1221$ euros
3) $\frac{-\frac{\sin [5]}{5}+\frac{1}{5} \sin [5(1+\pi)]}{\pi}$ euros $=0.1221$ euros
4) $30+\frac{-\frac{\sin [5]}{5}+\frac{1}{5} \operatorname{Sin}[5(1+\pi)]}{\pi}$ euros $=30.1221$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-12-14 x+2 x^{3}$ and the horizontal axis between the points $x=-3$ and $x=2$.

1) $\frac{125}{2}=62.5$
2) 63
3) $\frac{121}{2}=60.5$
4) $\frac{115}{2}=57.5$
5) $\frac{83}{2}=41.5$
6) $\frac{127}{2}=63.5$
7) 62
8) $\frac{77}{2}=38.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{10} \cos (6+4 t)$ per-unit .
The initial deposit in the account is 12000 euros. Compute the deposit after 2π years.

1) 12000 euros
2) 11930 euros
3) 12040 euros
4) 11920 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 13082921

Exercise 1

Compute $\int_{2 a}^{5}\left(-8-8 a+8 t+8 a t-6 t^{2}-6 a t^{2}+4 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -188
2) - 174
3) The rest of the solutions are not correct
4) -185
5) -194
6) -178

Exercise 2

Compute $\int_{0}^{1}\left(e^{2-t}\left(2+3 t^{2}\right)\right) d t$

1) -62.3109
2) 12.9017
3) 8.15485
4) -59.3403
5) -8.15485
6) -51.5506

Exercise 3

Compute $\int_{-4}^{-1}\left(\frac{5}{t^{5}}\right) d t$

1) 4.19328×10^{6}
2) -6.01352
3) -1.24512
4) -4.96221
5) -4.97506
6) -5.72683

Exercise 4

Compute $\int_{5}^{7}\left(\frac{-3-9 a-3 t+3 a t}{-3-2 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0.

1) 1.08895
2) The rest of the solutions are not correct
3) -0.131554
4) 0.195146
5) 1.00715
6) 0.573046

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=(9+6 t) e^{1+3 t}$ millions of euros/year.

If the initial deposit in the investment fund was 70 millions of euros, compute the depositis available after 1 year.

1) $70-\frac{7 e}{3}+\frac{19 e^{7}}{3}$ millions of euros $=7009.0007$ millions of euros
2) $70+\frac{1}{3 e^{2}}-\frac{7 e}{3}$ millions of euros $=63.7025$ millions of euros
3) $70-\frac{7 e}{3}+\frac{25 \mathbb{e}^{10}}{3}$ millions of euros $=183617.539$ millions of euros
4) $70-\frac{7 e}{3}+\frac{13 e^{4}}{3}$ millions of euros $=300.2493$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\cos (-7+7 t)$ euros.
Compute the average value of the shares along the first
π months of the year (between $t=0$ and $t=\pi$).

1) $50+\frac{2 \operatorname{Sin}[7]}{7 \pi}$ euros $=50.0598$ euros
2) $-30+\frac{2 \operatorname{Sin}[7]}{7 \pi}$ euros $=-29.9402$ euros
3) $-70+\frac{2 \operatorname{Sin}[7]}{7 \pi}$ euros $=-69.9402$ euros
4) $\frac{2 \operatorname{Sin}[7]}{7 \pi}$ euros $=0.0598$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$9 x+6 x^{2}-3 x^{3}$ and the horizontal axis between the points $x=1$ and $x=4$.

1) $\frac{9}{4}=2.25$
2) $\frac{227}{4}=56.75$
3) $\frac{215}{4}=53.75$
4) $\frac{221}{4}=55.25$
5) $\frac{225}{4}=56.25$
6) $\frac{229}{4}=57.25$
7) $\frac{223}{4}=55.75$
8) $\frac{231}{4}=57.75$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{10} \cos (5+6 t)$ per-unit.
The initial deposit in the account is 18000 euros. Compute the deposit after 2π years.

1) 17910 euros
2) 18000 euros
3) 17920 euros
4) 18080 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 21055224

Exercise 1

Compute $\int_{-2 a}^{1}\left(-1-8 a-8 t+4 a t+3 t^{2}+24 a t^{2}+16 t^{3}\right) d t$

- The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -9
2) 5
3) The rest of the solutions are not correct
4) -6
5) 4
6) 0

Exercise 2

Compute $\int_{-6}^{-5}(\log [-2 t]) d t$

1) -10.7764
2) -4.75106
3) 2.39651
4) -20.892
5) -11.0002
6) -10.4416

Exercise 3

Compute $\int_{-3}^{-2}\left(\frac{486}{(-1-3 t)^{4}}\right) d t$

1) -4.5901
2) -4.35701
3) -1.98249
4) 0.326531
5) -4.49668
6) 9881 .

Exercise 4

Compute $\int_{4}^{5}\left(\frac{-10-6 a-5 t+3 a t}{-4+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter
a. Compute the derivative of such a formula at the point 0 .

1) 0.712152
2) -0.214048
3) The rest of the solutions are not correct
4) 0.684152
5) 0.137152
6) 0.462452

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=(5+3 t) e^{-3+2 t} \mathrm{millions}$ of euros/year.

If the initial deposit in the investment fund was 40 millions of euros, compute the depositis available after 2 years.

1) $40-\frac{7}{4 e^{3}}+\frac{19 \mathbb{e}}{4}$ millions of euros $=52.8247$ millions of euros
2) $40-\frac{7}{4 e^{3}}+\frac{13}{4 e}$ millions of euros $=41.1085$ millions of euros
3) $40+\frac{1}{4 e^{5}}-\frac{7}{4 e^{3}}$ millions of euros $=39.9146$ millions of euros
4) $40-\frac{7}{4 e^{3}}+\frac{25 e^{3}}{4}$ millions of euros $=165.4475$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=20 e^{2+2 t}$ euros .
Compute the average value of the shares along the first
5 months of the year (between $t=0$ and $t=5$).

1) $\frac{1}{5}\left(-10 e^{2}+10 e^{4}\right)$ euros $=94.4182$ euros
2) $\frac{1}{5}\left(10-10 e^{2}\right)$ euros $=-12.7781$ euros
3) $\frac{1}{5}\left(-10 e^{2}+10 e^{6}\right)$ euros $=792.0795$ euros
4) $\frac{1}{5}\left(-10 e^{2}+10 e^{12}\right)$ euros $=325494.8047$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$-12+3 x^{2}$ and the horizontal axis between the points $x=-2$ and $x=4$.

1) $\frac{131}{2}=65.5$
2) 64
3) 67
4) 68
5) 0
6) 66
7) $\frac{133}{2}=66.5$
8) $\frac{135}{2}=67.5$

Exercise 8

Certain bank account offers a variable continuous compound interes rate. The interest rate for each year is given by the function $I(t)=\frac{1}{13} e^{-4+2 t}$ per-unit.
The initial deposit in the account is 5000 euros. Compute the deposit after 2 years.

1) 5262.3947 euros
2) 5192.3947 euros
3) 5202.3947 euros
4) 5282.3947 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 26052770

Exercise 1

Compute $\int_{-2 a}^{3}\left(-4+20 a+20 t-24 a t-18 t^{2}+6 a t^{2}+4 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -3
2) -16
3) The rest of the solutions are not correct
4) -6
5) -20
6) -2

Exercise 2

Compute $\int_{0}^{1}\left(e^{-3+2 t}\left(8+12 t-12 t^{2}\right)\right) d t$

1) -6.10414
2) -7.36023
3) -4.65171
4) -6.30196
5) 3.67879
6) 1.57109

Exercise 3

Compute $\int_{-9}^{-1}\left(\frac{9}{t^{4}}\right) d t$

1) 2.99588
2) -11.6399
3) -12.0171
4) -8.87026
5) -6.15083×10^{7}
6) - 14.0351

Exercise 4

Compute $\int_{3}^{5}\left(\frac{-2+t-4 a t}{-2 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -4.97765
2) -4.70525
3) -4.39445
4) -4.59045
5) -4.63905
6) The rest of the solutions are not correct

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(7+4 t)(\sin (2 \pi t)+2)$ millions of euros/year.
If the initial deposit in the investment fund was 80
millions of euros, compute the depositis available after 4 years.

1) $70+\frac{2}{\pi}$ millions of euros $=70.6366$ millions of euros
2) $98-\frac{2}{\pi}$ millions of euros $=97.3634$ millions of euros
3) $200-\frac{8}{\pi}$ millions of euros $=197.4535$ millions of euros
4) $124-\frac{4}{\pi}$ millions of euros $=122.7268$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(3+6 t)(\sin (2 \pi t)+2)$ euros.
Compute the average value of the shares along the first
6 months of the year (between $t=0$ and $t=6$).

1) $\frac{1}{6}\left(36-\frac{6}{\pi}\right)$ euros $=5.6817$ euros
2) $\frac{1}{6}\left(12-\frac{3}{\pi}\right)$ euros $=1.8408$ euros
3) $\frac{1}{6}\left(252-\frac{18}{\pi}\right)$ euros $=41.0451$ euros
4) $\frac{1}{2 \pi}$ euros $=0.1592$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$2 x-x^{2}$ and the horizontal axis between the points $x=-4$ and $x=5$.

1) $\frac{349}{6}=58.1667$
2) $\frac{179}{3}=59.6667$
3) $\frac{361}{6}=60.1667$
4) $\frac{176}{3}=58.6667$
5) $\frac{170}{3}=56.6667$
6) 18
7) 54
8) $\frac{62}{3}=20.6667$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}(3+6 t)\right)(\sin (2 \pi t)+2) \quad$ per-unit.
The initial deposit in the account is 13000 euros. Compute the deposit after 5 years.

1) 74978.6101 euros
2) 74988.6101 euros
3) 75008.6101 euros
4) 75038.6101 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 26256869

Exercise 1

Compute $\int_{a}^{1}\left(-6+9 a-18 t-2 a t+3 t^{2}-6 a t^{2}+8 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -6
2) The rest of the solutions are not correct
3) 12
4) -8
5) 2
6) 5

Exercise 2

Compute $\int_{0}^{1}\left(\left(2+2 t+2 t^{2}\right) \cos [t]\right) d t$

1) -8.34004
2) -6.30681
3) -12.066
4) -9.52203
5) 2.92476
6) -11.9251

Exercise 3

Compute $\int_{2}^{4}\left(\frac{7}{t^{4}}\right) d t$

1) -2.85154
2) 0.255208
3) -4.12546
4) -338603 .
5) -3.25567
6) -4.07731

Exercise 4

Compute $\int_{4}^{7}\left(\frac{4-4 a-4 t+2 a t}{2-3 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 1.73089
2) 1.17039
3) 0.535994
4) The rest of the solutions are not correct
5) 2.03739
6) 1.38629

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=20 e^{-2+2 t}$ millions of euros/year.
If the initial deposit in the investment fund was 90 millions of euros, compute the depositis available after 2 years.

1) $90-\frac{10}{e^{2}}+10 e^{4}$ millions of euros $=634.6281$ millions of euros
2) $90-\frac{10}{e^{2}}+10 e^{2}$ millions of euros $=162.5372$ millions of euros
3) $100-\frac{10}{e^{2}}$ millions of euros $=98.6466$ millions of euros
4) $90+\frac{10}{e^{4}}-\frac{10}{e^{2}}$ millions of euros $=88.8298$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(-1+4 t) \sin (2 t)$ euros.
Compute the average value of the shares along the first
3π months of the year (between $t=0$ and $t=3 \pi$).

1) $-\frac{2}{3}$ euros $=-0.6667$ euros
2) $\frac{2}{3}$ euros $=0.6667$ euros
3) - 2 euros
4) $-\frac{4}{3}$ euros $=-1.3333$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$-4+6 x-2 x^{2}$ and the horizontal axis between the points $x=1$ and $x=4$.

1) $\frac{73}{6}=12.1667$
2) $\frac{41}{3}=13.6667$
3) $\frac{38}{3}=12.6667$
4) $\frac{44}{3}=14.6667$
5) $\frac{35}{3}=11.6667$
6) $\frac{67}{6}=11.1667$
7) $\frac{29}{3}=9.6667$
8) $\frac{85}{6}=14.1667$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}(-1+4 t)\right) \sin (t)$ per-unit.
The initial deposit in the account is 10000 euros. Compute the deposit after 5π years.

1) 18383.3937 euros
2) 18373.3937 euros
3) 18433.3937 euros
4) 18283.3937 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 26523012

Exercise 1

Compute $\int_{-3 a}^{3}\left(6 a+4 t-18 a t-9 t^{2}+9 a t^{2}+4 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 19
2) 18
3) 34
4) The rest of the solutions are not correct
5) 32
6) 17

Exercise 2

Compute $\int_{0}^{1}\left(\left(12 t+12 t^{2}\right) \operatorname{Cos}[3+2 t]\right) d t$

1) -12.6564
2) -4.79462
3) -2.68402
4) 2.83662
5) -12.4448
6) -11.3346

Exercise 3

Compute $\int_{-5}^{-3}\left(-\frac{64}{(-1-2 t)^{3}}\right) d t$

1) -4.22299
2) -4.12152
3) -4.71547
4) -0.442469
5) 2968 .
6) -4.63662

Exercise 4

Compute $\int_{4}^{5}\left(\frac{10-3 \mathrm{a}+5 \mathrm{t}+\mathrm{a} \mathrm{t}}{-6-\mathrm{t}+\mathrm{t}^{2}}\right) \mathrm{dt}$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -0.645349
2) The rest of the solutions are not correct
3) -0.294449
4) -0.442249
5) 0.154151
6) 0.671151

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=3+3 t^{2}+2 t^{4}$ millions of euros/year.
If the initial deposit in the investment fund was 50
millions of euros, compute the depositis available after 3 years.

1) $\frac{384}{5}$ millions of euros $=76.8$ millions of euros
2) $\frac{916}{5}$ millions of euros $=183.2$ millions of euros
3) $\frac{272}{5}$ millions of euros $=54.4$ millions of euros
4) $\frac{2678}{5}$ millions of euros $=535.6$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=10 e^{1+2 t}$ euros.
Compute the average value of the shares along the first
8 months of the year (between $t=0$ and $t=8$).

1) $\frac{1}{8}\left(-5 e+5 e^{3}\right)$ euros $=10.8545$ euros
2) $\frac{1}{8}\left(\frac{5}{e}-5 e\right)$ euros $=-1.469$ euros
3) $\frac{1}{8}\left(-5 e+5 e^{17}\right)$ euros $=1.5097 \times 10^{7}$ euros
4) $\frac{1}{8}\left(-5 e+5 \mathbb{e}^{5}\right)$ euros $=91.0593$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-12 x-2 x^{2}+2 x^{3}$ and the horizontal axis between the points $x=-4$ and $x=4$.

1) $\frac{451}{3}=150.3333$
2) 64
3) $\frac{454}{3}=151.3333$
4) $\frac{911}{6}=151.8333$
5) $\frac{256}{3}=85.3333$
6) $\frac{905}{6}=150.8333$
7) $\frac{445}{3}=148.3333$
8) $\frac{457}{3}=152.3333$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\frac{e^{-3+t}}{9}$ per-unit.
The initial deposit in the account is 20000 euros. Compute the deposit after 3 years.

1) 22247.0827 euros
2) 22227.0827 euros
3) 22297.0827 euros
4) 22267.0827 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 48143225

Exercise 1

Compute $\int_{-3 a}^{-3}\left(9+18 a+12 t-48 a t-24 t^{2}-27 a t^{2}-12 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -13
2) 0
3) -8
4) -10
5) The rest of the solutions are not correct
6) 2

Exercise 2

Compute $\int_{-1}^{1}(-3 \operatorname{Cos}[1+3 t]) d t$

1) 1.6661
2) -2.65229
3) -3.94285
4) 3.20937
5) -3.65062
6) -0.152495

Exercise 3

Compute $\int_{-6}^{0}\left(-\frac{27}{1-3 t}\right) d t$

1) -2.94444
2) -70.2855
3) -104.485
4) -26.5
5) -96.7413
6) -54.7088

Exercise 4

Compute $\int_{4}^{5}\left(\frac{6-15 \mathrm{a}-2 \mathrm{t}-5 \mathrm{at}}{-9+\mathrm{t}^{2}}\right) \mathrm{dt}$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -3.83834
2) -3.28184
3) -4.01884
4) The rest of the solutions are not correct
5) -3.46574
6) -3.91254

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(4+t) \log (2 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 40
millions euros, compute the deposit available after (with respect to $t=1$) 2 years.

1) $18-\frac{9 \log [2]}{2}+\frac{65 \log [10]}{2}$ millions of euros $=89.7149$ millions of euros
2) $\frac{97}{4}-\frac{9 \log [2]}{2}+24 \log [8]$ millions of euros $=71.0374$ millions of euros
3) $100-\frac{9 \log [2]}{2}+\frac{33 \log [6]}{2}$ millions of euros $=126.4449$ millions of euros
4) $30-\frac{9 \log [2]}{2}+\frac{33 \log [6]}{2}$ millions of euros $=56.4449$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(2+2 t) \log (t)$ euros.
Compute the average value of shares between month 1 and month 3 (between $t=1$ and $t=3$).

1) $\frac{1}{2}\left(-\frac{27}{2}+24 \log [4]\right)$ euros $=9.8855$ euros
2) $\frac{1}{3}\left(-\frac{27}{2}+24 \log [4]\right)$ euros $=6.5904$ euros
3) $\frac{1}{3}(-20+35 \log [5])$ euros $=12.1101$ euros
4) $\frac{1}{2}(-8+15 \log [3])$ euros $=4.2396$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-18+18 x+2 x^{2}-2 x^{3}$ and the horizontal axis between the points $x=-3$ and $x=0$.

1) $\frac{159}{2}=79.5$
2) $\frac{169}{2}=84.5$
3) $\frac{161}{2}=80.5$
4) $\frac{157}{2}=78.5$
5) $\frac{163}{2}=81.5$
6) 81
7) $\frac{153}{2}=76.5$
8) $\frac{165}{2}=82.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{4+t}{100}\right) \log (2 t)$ per-unit.
In the year $t=1$ we deposint in the account 3000
euros. Compute the deposit in the account after (with respect to $t=1$) 4 years.

1) 5002.0801 euros
2) 4932.0801 euros
3) 4952.0801 euros
4) 5022.0801 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 53956072

Exercise 1

Compute $\int_{a}^{0}\left(-3-4 a+8 t+10 a t-15 t^{2}-12 a t^{2}+16 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -3
2) -16
3) -11
4) 4
5) The rest of the solutions are not correct
6) -17

Exercise 2

Compute $\int_{0}^{1}\left(\left(-4-12 t+4 t^{2}\right) \operatorname{Sin}[2-2 t]\right) d t$

1) 0 .
2) -24.6823
3) -4.33333
4) -17.6388
5) -5.52055
6) -18.5114

Exercise 3

Compute $\int_{6}^{9}\left(\frac{2}{(-3+\mathrm{t})^{3}}\right) d \mathrm{t}$

1) 0.0833333
2) -4.47099
3) -607.5
4) -2.50414
5) -3.35318
6) -3.19512

Exercise 4

Compute $\int_{1}^{3}\left(\frac{-2 \mathrm{a}+5 \mathrm{t}-\mathrm{a} \mathrm{t}}{2 \mathrm{t}+\mathrm{t}^{2}}\right) \mathrm{dt}$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -0.430712
2) The rest of the solutions are not correct
3) -0.431712
4) -1.79201
5) -1.09861
6) -0.694412

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=3+3 t^{2}+3 t^{3}+t^{4}$ millions of euros/year.
If the initial deposit in the investment fund was 80 millions of euros, compute the depositis available after 3 years.

1) $\frac{2764}{5}$ millions of euros $=552.8$ millions of euros
2) $\frac{1699}{20}$ millions of euros $=84.95$ millions of euros
3) $\frac{4507}{20}$ millions of euros $=225.35$ millions of euros
4) $\frac{562}{5}$ millions of euros $=112.4$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(6+8 t) e^{-1+t}$ euros.
Compute the average value of the shares along the first
3 months of the year (between $t=0$ and $t=3$).

1) $\frac{1}{3}\left(\frac{2}{e}+22 e^{2}\right)$ euros $=54.4317$ euros
2) $\frac{1}{3}\left(\frac{2}{e}+14 e\right)$ euros $=12.9306$ euros
3) $\frac{1}{3}\left(6+\frac{2}{e}\right)$ euros $=2.2453$ euros
4) $\frac{1}{3}\left(-\frac{10}{e^{2}}+\frac{2}{e}\right)$ euros $=-0.2059$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$ $-2 x-x^{2}$ and the horizontal axis between the points $x=-4$ and $x=4$.

1) 32
2) $\frac{142}{3}=47.3333$
3) $\frac{88}{3}=29.3333$
4) $\frac{281}{6}=46.8333$
5) $\frac{145}{3}=48.3333$
6) $\frac{136}{3}=45.3333$
7) $\frac{128}{3}=42.6667$
8) $\frac{287}{6}=47.8333$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\left(\frac{3-t}{20}\right) e^{-1+t}$ per-unit.
The initial deposit in the account is 7000 euros. Compute the deposit after 1 year.

1) 7555.9419 euros
2) 7645.9419 euros
3) 7535.9419 euros
4) 7605.9419 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 74540350

Exercise 1

Compute $\int_{a}^{0}\left(2 a-4 t+8 a t-12 t^{2}-6 a t^{2}+8 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -9
2) 0
3) -17
4) -1
5) -15
6) The rest of the solutions are not correct

Exercise 2

Compute $\int_{-3}^{0}((1+3 t) \operatorname{Sin}[2-t]) d t$

1) 7.45782
2) -26.5375
3) 10.0687
4) -32.597
5) -2.97845
6) -29.5969

Exercise 3

Compute $\int_{-1}^{1}\left(-\frac{192}{(-3-2 t)^{5}}\right) d t$

1) 23.9616
2) -85.2638
3) -95.0934
4) -104.732
5) -3906 .
6) -83.0745

Exercise 4

Compute $\int_{4}^{5}\left(\frac{-4-3 a-4 t+a t}{-3-2 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 0.182322
2) 0.149422
3) 0.0216216
4) -0.144478
5) -0.449678
6) The rest of the solutions are not correct

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=t+2 t^{3}+3 t^{4}$ millions of euros/year.

If the initial deposit in the investment fund was 70
millions of euros, compute the depositis available after 3 years.

1) $\frac{1304}{5}$ millions of euros $=260.8$ millions of euros
2) $\frac{496}{5}$ millions of euros $=99.2$ millions of euros
3) $\frac{4102}{5}$ millions of euros $=820.4$ millions of euros
4) $\frac{358}{5}$ millions of euros $=71.6$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\sin (2+3 t)$ euros.
Compute the average value of the shares along the first
π months of the year (between $t=0$ and $t=\pi$).

1) $60+\frac{2 \operatorname{Cos}[2]}{3 \pi}$ euros $=59.9117$ euros
2) $\frac{2 \operatorname{Cos}[2]}{3 \pi}$ euros $=-0.0883$ euros
3) $-70+\frac{2 \operatorname{Cos}[2]}{3 \pi}$ euros $=-70.0883$ euros
4) $10+\frac{2 \operatorname{Cos}[2]}{3 \pi}$ euros $=9.9117$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$-3-2 x+x^{2}$ and the horizontal axis between the points $x=-5$ and $x=1$

1) $\frac{176}{3}=58.6667$
2) $\frac{188}{3}=62.6667$
3) $\frac{379}{6}=63.1667$
4) 48
5) $\frac{182}{3}=60.6667$
6) $\frac{373}{6}=62.1667$
7) $\frac{185}{3}=61.6667$
8) $\frac{367}{6}=61.1667$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\frac{1}{10} \sin (-2+3 t)$ per-unit.

The initial deposit in the account is 7000 euros. Compute the deposit after 2π years.

1) 7000 euros
2) 6930 euros
3) 7070 euros
4) 7050 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 75573701

Exercise 1

Compute $\int_{-3 a}^{2}\left(-10-21 a-14 t+42 a t+21 t^{2}+36 a t^{2}+16 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 115
2) The rest of the solutions are not correct
3) 104
4) 102
5) 113
6) 108

Exercise 2

Compute $\int_{0}^{1}\left(-\left(-12-8 t+8 t^{2}\right) \operatorname{Sin}[2+2 t]\right) d t$

1) -5.58369
2) 4.35762
3) -6.13683
4) 1.59498
5) -5.56012
6) -10.0907

Exercise 3

Compute $\int_{2}^{3}\left(\frac{1024}{(-2+4 t)^{5}}\right) d t$

1) -3.50078
2) -238336 .
3) 0.0429827
4) -3.486
5) -3.84758
6) -3.2424

Exercise 4

Compute $\int_{6}^{7}\left(\frac{4-10 a+2 t+5 a t}{-4+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -0.391785
2) 0.120515
3) The rest of the solutions are not correct
4) 0.588915
5) -0.289685
6) 0.532615

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(3+3 t) \log (2 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 90
millions euros, compute the deposit available after (with respect to $t=1$) 5 years.

1) $\frac{235}{4}-\frac{9 \log [2]}{2}+72 \log [12]$ millions of euros $=234.5441$ millions of euros
2) $\frac{279}{4}-\frac{9 \log [2]}{2}+36 \log [8]$ millions of euros $=141.4907$ millions of euros
3) $60-\frac{9 \log [2]}{2}+\frac{105 \log [10]}{2}$ millions of euros $=177.7666$ millions of euros
4) $\frac{195}{4}-\frac{9 \log [2]}{2}+72 \log [12]$ millions of euros $=224.5441$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=30 e^{2+2 t}$ euros.
Compute the average value of the shares along the first
7 months of the year (between $t=0$ and $t=7$).

1) $\frac{1}{7}\left(-15 e^{2}+15 e^{6}\right)$ euros $=848.6566$ euros
2) $\frac{1}{7}\left(15-15 e^{2}\right)$ euros $=-13.6908$ euros
3) $\frac{1}{7}\left(-15 e^{2}+15 e^{4}\right)$ euros $=101.1623$ euros
4) $\frac{1}{7}\left(-15 e^{2}+15 e^{16}\right)$ euros $=1.9042 \times 10^{7}$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=4-4 x-x^{2}+x^{3}$ and the horizontal axis between the points $x=-4$ and $x=4$.

1) $\frac{361}{6}=60.1667$
2) $\frac{32}{3}=10.6667$
3) $\frac{527}{6}=87.8333$
4) $\frac{515}{6}=85.8333$
5) $\frac{248}{3}=82.6667$
6) $\frac{503}{6}=83.8333$
7) $\frac{256}{3}=85.3333$
8) $\frac{521}{6}=86.8333$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{14} e^{-9+3 t}$ per-unit.
The initial deposit in the account is 14000 euros. Compute the deposit after 3 years.

1) 14377.2911 euros
2) 14337.2911 euros
3) 14427.2911 euros
4) 14327.2911 euros

Mathematics 1-ADE/FyCo - 2020/2021
List of exercises 03-Integration for identity number: 77379111

Exercise 1

Compute $\int_{a}^{5}\left(8-6 a+12 t+22 a t-33 t^{2}-9 a t^{2}+12 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -148
2) -122
3) -146
4) -134
5) The rest of the solutions are not correct
6) -138

Exercise 2

Compute $\int_{0}^{1}\left(\left(9-18 t^{2}\right) \operatorname{Cos}[1+3 t]\right) d t$

1) -3.83295
2) -0.756802
3) -4.32276
4) -1.96093
5) 0.229538
6) -3.79259

Exercise 3

Compute $\int_{-6}^{-3}\left(\frac{9}{t^{3}}\right) d t$

1) 607.5
2) -4.32276
3) -3.79259
4) -0.375
5) -2.62945
6) -3.83295

Exercise 4

Compute $\int_{2}^{3}\left(\frac{-6 a-3 t-2 a t}{3 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -0.46013
2) The rest of the solutions are not correct
3) -1.33463
4) -1.09853
5) -0.81093
6) -1.41043

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=20 e^{-2+t}$ millions of euros/year.

If the initial deposit in the investment fund was 80 millions of euros, compute the depositis available after 2 years.

1) $80+\frac{20}{e^{3}}-\frac{20}{e^{2}}$ millions of euros $=78.289$ millions of euros
2) $80-\frac{20}{e^{2}}+20 e$ millions of euros $=131.6589$ millions of euros
3) $80-\frac{20}{e^{2}}+\frac{20}{e}$ millions of euros $=84.6509$ millions of euros
4) $100-\frac{20}{e^{2}}$ millions of euros $=97.2933$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(5+2 t) e^{2 t}$ euros.
Compute the average value of the shares along the first
4 months of the year (between $t=0$ and $t=4$).

1) $\frac{1}{4}\left(-2+4 e^{4}\right)$ euros $=54.0982$ euros
2) $\frac{1}{4}\left(-2+6 e^{8}\right)$ euros $=4470.937$ euros
3) $\frac{1}{4}\left(-2+3 e^{2}\right)$ euros $=5.0418$ euros
4) $\frac{1}{4}\left(-2+\frac{1}{e^{2}}\right)$ euros $=-0.4662$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-6 x-2 x^{2}$ and the horizontal axis between the points $x=-5$ and $x=-2$.

1) $\frac{127}{6}=21.1667$
2) 15
3) $\frac{139}{6}=23.1667$
4) $\frac{65}{3}=21.6667$
5) $\frac{71}{3}=23.6667$
6) $\frac{68}{3}=22.6667$
7) $\frac{145}{6}=24.1667$
8) $\frac{59}{3}=19.6667$

Exercise 8

Certain bank account offers a variable continuous compound interes rate. The interest rate for each year is given by the function $I(t)=\left(\frac{3+t}{13}\right) e^{-3+t}$ per-unit.
The initial deposit in the account is 1000 euros. Compute the deposit after 1 year.

1) 1083.8517 euros
2) 1113.8517 euros
3) 1023.8517 euros
4) 1033.8517 euros

Mathematics 1-ADE/FyCo - 2020/2021
List of exercises 03-Integration for identity number: 77388334

Exercise 1

Compute $\int_{2 a}^{1}\left(9-24 a+24 t+8 a t-6 t^{2}+6 a t^{2}-4 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -36
2) -52
3) -43
4) The rest of the solutions are not correct
5) -39
6) -45

Exercise 2

Compute $\int_{3}^{5}\left(\left(-8-12 t-4 t^{2}\right) \log [2 t]\right) d t$

1) -616.995
2) -509.439
3) -2052.16
4) -1306.06
5) -1416.63
6) -1735.75

Exercise 3

Compute $\int_{4}^{9}\left(\frac{4}{(1-2 t)^{2}}\right) d t$

1) -2.56371
2) 4570 .
3) 0.168067
4) -3.40717
5) -2.45326
6) -2.78075

Exercise 4

Compute $\int_{2}^{3}\left(\frac{-2+3 a-2 t-3 a t}{-1+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) -1.00125
3) -0.863046
4) -1.02775
5) -0.271346
6) -0.709046

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=(3+6 t) e^{3+t}$ millions of euros/year.

If the initial deposit in the investment fund was 70 millions of euros, compute the depositis available after 2 years.

1) $70+3 e^{3}+15 e^{6}$ millions of euros $=6181.6885$ millions of euros
2) $70-9 \mathbb{e}^{2}+3 \mathbb{e}^{3}$ millions of euros $=63.7551$ millions of euros
3) $70+3 e^{3}+3 e^{4}$ millions of euros $=294.0511$ millions of euros
4) $70+3 e^{3}+9 e^{5}$ millions of euros $=1465.975$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\sin (-5+7 t)$ euros.
Compute the average value of the shares along the first
2π months of the year (between $t=0$ and $t=2 \pi$).

1) 20 euros
2) - 40 euros
3) 30 euros
4) 0 euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$3-3 x^{2}$ and the horizontal axis between the points $x=-3$ and $x=1$.

1) 28
2) $\frac{53}{2}=26.5$
3) 16
4) $\frac{51}{2}=25.5$
5) $\frac{55}{2}=27.5$
6) 24
7) $\frac{57}{2}=28.5$
8) 27

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{10} \sin (3+t)$ per-unit.
The initial deposit in the account is 20000 euros. Compute the deposit after 2π years.

1) 19970 euros
2) 19980 euros
3) 20010 euros
4) 20000 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 77434209

Exercise 1

Compute $\int_{a}^{-3}\left(-3-5 a+10 t+6 a t-9 t^{2}-3 a t^{2}+4 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 63
2) 81
3) 57
4) 87
5) 68
6) The rest of the solutions are not correct

Exercise 2

Compute $\int_{2}^{3}((-1+3 t) \log [t]) d t$

1) 8.76284
2) -24.6493
3) -25.3338
4) -21.3722
5) 6.01284
6) -24.5644

Exercise 3

Compute $\int_{-6}^{-5}\left(\frac{8}{(3+2 t)^{3}}\right) d t$

1) -4.08532
2) -0.016125
3) -4.21328
4) -4.09945
5) 2080 .
6) -3.55443

Exercise 4

Compute $\int_{2}^{3}\left(\frac{-a+2 t+a t}{-t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) 0.757765
3) 0.405465
4) -0.479535
5) 0.119565
6) -0.0648349

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=2 t+3 t^{2}+3 t^{3}$ millions of euros/year.

If the initial deposit in the investment fund was 90
millions of euros, compute the depositis available after 3 years.

1) $\frac{371}{4}$ millions of euros $=92.75$ millions of euros
2) 362 millions of euros
3) $\mathbf{1 1 4}$ millions of euros
4) $\frac{747}{4}$ millions of euros $=186.75$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(6+6 t) e^{-1+2 t}$ euros.
Compute the average value of the shares along the first
9 months of the year (between $t=0$ and $t=9$).

1) $\frac{1}{9}\left(-\frac{3}{2 e}+\frac{57 e^{17}}{2}\right)$ euros $=7.6491 \times 10^{7}$ euros
2) $\frac{1}{9}\left(-\frac{3}{2 e^{3}}-\frac{3}{2 e}\right)$ euros $=-0.0696$ euros
3) $\frac{1}{9}\left(-\frac{3}{2 e}+\frac{9 e}{2}\right)$ euros $=1.2978$ euros
4) $\frac{1}{9}\left(-\frac{3}{2 e}+\frac{15 e^{3}}{2}\right)$ euros $=16.6766$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-6 x+3 x^{2}+3 x^{3}$ and the horizontal axis between the points $x=-2$ and $x=3$.

1) $\frac{303}{4}=75.75$
2) $\frac{295}{4}=73.75$
3) $\frac{297}{4}=74.25$
4) $\frac{275}{4}=68.75$
5) $\frac{301}{4}=75.25$
6) $\frac{285}{4}=71.25$
7) $\frac{211}{4}=52.75$
8) $\frac{293}{4}=73.25$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{18}(-2+3 t)\right) e^{-2+3 t}$ per-unit.
The initial deposit in the account is 18000 euros. Compute the deposit after 1 year.

1) 18225.8453 euros
2) 18155.8453 euros
3) 18135.8453 euros
4) 18215.8453 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 77435467

Exercise 1

Compute $\int_{-2 a}^{1}\left(-4+10 a+10 t-8 a t-6 t^{2}+6 a t^{2}+4 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) 0
3) - 9
4) 3
5) -20
6) 5

Exercise 2

Compute $\int_{-6}^{-1}((-6-3 t) \log [-3 t]) d t$

1) -279.112
2) -255.575
3) 60.7204
4) -214.559
5) -204.604
6) 56.9704

Exercise 3

Compute $\int_{-9}^{1}\left(-\frac{5120}{(5-4 t)^{5}}\right) d t$

1) -1346.89
2) -320 .
3) -1470.94
4) 1.18753×10^{9}
5) -1130.74
6) -1094.66

Exercise 4

Compute $\int_{3}^{5}\left(\frac{6-4 a+2 t+2 a t}{-6+t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -0.112636
2) The rest of the solutions are not correct
3) 0.455964
4) 0.575364
5) 0.848664
6) 0.169364

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=30 e^{2 t}$ millions of euros/year.
If the initial deposit in the investment fund was 30 millions of euros, compute the depositis available after 1 year.

1) $15+15 e^{6}$ millions of euros $=6066.4319$ millions of euros
2) $15+15 e^{4}$ millions of euros $=833.9723$ millions of euros
3) $15+\frac{15}{\mathbb{e}^{2}}$ millions of euros $=17.03$ millions of euros
4) $15+15 e^{2}$ millions of euros $=125.8358$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year. The following function yields the value of the shares for each month t :
$V(t)=3 t+3 t^{4}$ euros.
Compute the average value of the shares along the first
9 months of the year (between $t=0$ and $t=9$).

1) $\frac{177}{10}$ euros $=17.7$ euros
2) $\frac{7}{30}$ euros $=0.2333$ euros
3) $\frac{14}{5}$ euros $=2.8$ euros
4) $\frac{39501}{10}$ euros $=3950.1$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-18 x+3 x^{2}+3 x^{3}$ and the horizontal axis between the points $x=-5$ and $x=2$.

1) $\frac{411}{4}=102.75$
2) $\frac{789}{4}=197.25$
3) $\frac{925}{4}=231.25$
4) $\frac{917}{4}=229.25$
5) $\frac{923}{4}=230.75$
6) $\frac{539}{4}=134.75$
7) $\frac{927}{4}=231.75$
8) $\frac{929}{4}=232.25$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{100}\left(t+t^{3}+2 t^{4}\right)$ per-unit.
The initial deposit in the account is 16000 euros. Compute the deposit after 2 years.

1) 19329.3362 euros
2) 19289.3362 euros
3) 19319.3362 euros
4) 19309.3362 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 77647383

Exercise 1

Compute $\int_{3 a}^{5}\left(-12-15 a+10 t+36 a t-18 t^{2}+27 a t^{2}-12 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 1533
2) 1551
3) 1536
4) The rest of the solutions are not correct
5) 1548
6) 1542

Exercise 2

Compute $\int_{-1}^{0}(-3 \operatorname{Cos}[1+2 t]) d t$

1) -2.52441
2) 1.26221
3) -9.44564
4) -10.7924
5) -10.0694
6) -10.5683

Exercise 3

Compute $\int_{4}^{6}\left(\frac{1}{\mathrm{t}}\right) \mathrm{dt}$
$\ldots \mathrm{N}$: Internal precision limit $\$$ MaxExtraPrecision = 50.، reached while evaluating $-\log \left[\frac{3}{2}\right]-\log [4]+\log [6]$.

1) 0.405465
2) -3.98881
3) -3.74172
4) -4.27521
5) -3.5919
6) -4.18643

Exercise 4

Compute $\int_{1}^{2}\left(\frac{6 a-t+3 a t}{2 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) 1.54634
3) 2.01234
4) 2.07944
5) 1.83514
6) 1.46244

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(1+2 t) e^{t}$ millions of euros/year.
If the initial deposit in the investment fund was 80 millions of euros, compute the depositis available after 1 year.

1) $81-\frac{3}{\mathbb{e}}$ millions of euros $=79.8964$ millions of euros
2) $81+3 e^{2}$ millions of euros $=103.1672$ millions of euros
3) $81+\mathbb{e}$ millions of euros $=83.7183$ millions of euros
4) $81+5 e^{3}$ millions of euros $=181.4277$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(1+2 t) e^{1+2 t}$ euros.
Compute the average value of the shares along the first
8 months of the year (between $t=0$ and $t=8$).

1) $-\frac{1}{8 e}$ euros $=-0.046$ euros
2) $\frac{e^{3}}{8}$ euros $=2.5107$ euros
3) \mathbb{e}^{17} euros $=2.4155 \times 10^{7}$ euros
4) $\frac{e^{5}}{4}$ euros $=37.1033$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=12 x+10 x^{2}+2 x^{3}$ and the horizontal axis between the points $x=-3$ and $x=4$.

1) $\frac{2587}{6}=431.1667$
2) 447
3) 445
4) $\frac{895}{2}=447.5$
5) $\frac{2597}{6}=432.8333$
6) $\frac{891}{2}=445.5$
7) $\frac{893}{2}=446.5$
8) $\frac{887}{2}=443.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1-t}{210678}\right) e^{3 t}$ per-unit.
The initial deposit in the account is 13000 euros. Compute the deposit after 3 years.

1) 12765.1392 euros
2) 12745.1392 euros
3) 12815.1392 euros
4) 12725.1392 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 77648906

Exercise 1

Compute $\int_{2 a}^{-5}\left(-4+36 a t-27 t^{2}+30 a t^{2}-20 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -790
2) -808
3) -792
4) -801
5) The rest of the solutions are not correct
6) - 797

Exercise 2

Compute $\int_{2}^{6}(-3 \log [3 t]) d t$

1) -135.682
2) -29.2761
3) -194.659
4) -95.6192
5) -41.2761
6) -108.239

Exercise 3

Compute $\int_{-8}^{-6}\left(-\frac{15}{5-5 t}\right) d t$

1) -3.69719
2) -3.26611
3) -3.2605
4) -4.63456
5) -0.753943
6) -0.251314

Exercise 4

Compute $\int_{5}^{6}\left(\frac{-3+5 a+t-5 a t}{3-4 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -2.76243
2) -2.06643
3) -2.55033
4) The rest of the solutions are not correct
5) -1.76893
6) -2.70683

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(2+t) \log (2 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 20
millions euros, compute the deposit available after (with respect to $t=1$) 2 years.

1) $6-\frac{5 \log [2]}{2}+\frac{45 \log [10]}{2}$ millions of euros $=56.0753$ millions of euros
2) $14-\frac{5 \log [2]}{2}+\frac{21 \log [6]}{2}$ millions of euros $=31.0806$ millions of euros
3) $-6-\frac{5 \log [2]}{2}+\frac{21 \log [6]}{2}$ millions of euros $=11.0806$ millions of euros
4) $\frac{41}{4}-\frac{5 \log [2]}{2}+16 \log [8]$ millions of euros $=41.7882$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(2+t) \log (2 t)$ euros.
Compute the average value of shares between month 1 and month 3 (between $t=1$ and $t=3$).

1) $\frac{1}{2}\left(-6-\frac{5 \log [2]}{2}+\frac{21 \log [6]}{2}\right)$ euros $=5.5403$ euros
2) $\frac{1}{2}\left(-\frac{39}{4}-\frac{5 \log [2]}{2}+16 \log [8]\right)$ euros $=10.8941$ euros
3) $\frac{1}{3}\left(-14-\frac{5 \log [2]}{2}+\frac{45 \log [10]}{2}\right)$ euros $=12.0251$ euros
4) $\frac{1}{3}\left(-\frac{39}{4}-\frac{5 \log [2]}{2}+16 \log [8]\right)$ euros $=7.2627$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-18+15 x+6 x^{2}-3 x^{3}$ and the horizontal axis between the points $x=-3$ and $x=5$.

1) $\frac{451}{2}=225.5$
2) 224
3) $\frac{445}{2}=222.5$
4) 128
5) 225
6) 96
7) $\frac{381}{2}=190.5$
8) $\frac{449}{2}=224.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{2+t}{100}\right) \log (2 t)$ per-unit.
In the year $t=1$ we deposint in the account 17000
euros. Compute the deposit in the account after (with respect to $t=1$) 5 years.

1) 29280.8896 euros
2) 29170.8896 euros
3) 29190.8896 euros
4) 29200.8896 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 77770524

Exercise 1

Compute $\int_{-a}^{3}\left(-6-5 a-10 t-26 a t-39 t^{2}-12 a t^{2}-16 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) -263
3) -246
4) - 251
5) -252
6) -259

Exercise 2

Compute $\int_{-5}^{-4}\left(\left(-4-12 t-4 t^{2}\right) \log [-2 t]\right) d t$

1) -313.464
2) 215.779
3) -73.3378
4) -308.081
5) -290.667
6) -69.2267

Exercise 3

Compute $\int_{-6}^{-3}\left(-\frac{9216}{(4-4 t)^{5}}\right) d t$

1) -3.12174
2) -0.00785195
3) 1.16278×10^{8}
4) -4.45032
5) -4.19878
6) -4.52808

Exercise 4

Compute $\int_{3}^{4}\left(\frac{6+8 a+2 t-4 a t}{-6+t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -0.443003
2) -1.4896
3) -1.6137
4) -0.930203
5) -1.2165
6) The rest of the solutions are not correct

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(7+3 t)(\sin (2 \pi t)+1)$ millions of euros/year.
If the initial deposit in the investment fund was 30
millions of euros, compute the depositis available after 4 years.

1) $50-\frac{3}{\pi}$ millions of euros $=49.0451$ millions of euros
2) $82-\frac{6}{\pi}$ millions of euros $=80.0901$ millions of euros
3) $\frac{77}{2}-\frac{3}{2 \pi}$ millions of euros $=38.0225$ millions of euros
4) $\frac{49}{2}+\frac{3}{2 \pi}$ millions of euros $=24.9775$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=3+3 t+2 t^{2}+t^{3}+2 t^{4}$ euros.
Compute the average value of the shares along the first
9 months of the year (between $t=0$ and $t=9$).

1) $\frac{512}{135}$ euros $=3.7926$ euros
2) $\frac{57543}{20}$ euros $=2877.15$ euros
3) $\frac{351}{20}$ euros $=17.55$ euros
4) $\frac{349}{540}$ euros $=0.6463$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-18+21 x-3 x^{3}$ and the horizontal axis between the points $x=-1$ and $x=2$.

1) $\frac{159}{4}=39.75$
2) $\frac{165}{4}=41.25$
3) $\frac{153}{4}=38.25$
4) $\frac{167}{4}=41.75$
5) $\frac{135}{4}=33.75$
6) $\frac{163}{4}=40.75$
7) $\frac{161}{4}=40.25$
8) $\frac{171}{4}=42.75$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{3+t}{100}$ per-unit.
The initial deposit in the account is 10000 euros. Compute the deposit after 1 year.

1) 10346.1971 euros
2) 10356.1971 euros
3) 10336.1971 euros
4) 10386.1971 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 78026316

Exercise 1

Compute $\int_{a}^{4}\left(6-7 a+14 t-20 a t+30 t^{2}-12 a t^{2}+16 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) -463
3) -452
4) - 459
5) -468
6) -469

Exercise 2

Compute $\int_{0}^{1}\left(\left(12 t+12 t^{2}\right) \operatorname{Cos}[3-2 t]\right) d t$

1) -0.163901
2) -4.24793
3) -3.46717
4) -3.55495
5) 5.40302
6) -4.20735

Exercise 3

Compute $\int_{5}^{7}\left(\frac{8}{(2+\mathrm{t})^{3}}\right) \mathrm{dt}$

1) -3.46717
2) -4.24793
3) -3.15188
4) 0.0322499
5) -3.55495
6) -2080 .

Exercise 4

Compute $\int_{2}^{5}\left(\frac{4 a-5 t+2 a t}{2 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 1.08568
2) The rest of the solutions are not correct
3) 1.15808
4) 0.991781
5) 1.38218
6) 1.83258

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=10 e^{3+2 t}$ millions of euros/year.
If the initial deposit in the investment fund was 80 millions of euros, compute the depositis available after 2 years.

1) $80-5 e^{3}+5 e^{7}$ millions of euros $=5462.7381$ millions of euros
2) $80-5 e^{3}+5 e^{5}$ millions of euros $=721.6381$ millions of euros
3) $80+5 e-5 e^{3}$ millions of euros $=-6.8363$ millions of euros
4) $80-5 e^{3}+5 \mathbb{e}^{9}$ millions of euros $=40494.992$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(8+5 t) e^{1+3 t}$ euros.
Compute the average value of the shares along the first
4 months of the year (between $t=0$ and $t=4$).

1) $\frac{1}{4}\left(-\frac{19 e}{9}+\frac{34 e^{4}}{9}\right)$ euros $=50.1303$ euros
2) $\frac{1}{4}\left(\frac{4}{9 e^{2}}-\frac{19 \mathbb{e}}{9}\right)$ euros $=-1.4196$ euros
3) $\frac{1}{4}\left(-\frac{19 \mathbb{e}}{9}+\frac{49 e^{7}}{9}\right)$ euros $=1491.2049$ euros
4) $\frac{1}{4}\left(-\frac{19 e}{9}+\frac{79 e^{13}}{9}\right)$ euros $=970850.1756$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$-4 x-2 x^{2}$ and the horizontal axis between the points $x=-3$ and $x=2$.

1) $\frac{121}{6}=20.1667$
2) $\frac{133}{6}=22.1667$
3) $\frac{56}{3}=18.6667$
4) $\frac{71}{3}=23.6667$
5) $\frac{62}{3}=20.6667$
6) $\frac{65}{3}=21.6667$
7) $\frac{40}{3}=13.3333$
8) 8

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\left(\frac{1-3 t}{1635}\right) e^{2+2 t}$ per-unit.

The initial deposit in the account is 8000 euros. Compute the deposit after 1 year.

1) 7888.8003 euros
2) 7958.8003 euros
3) 7948.8003 euros
4) 7908.8003 euros

Mathematics 1-ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 78428692

Exercise 1

Compute $\int_{3 a}^{-1}\left(-4+27 a-18 t-45 a t^{2}+20 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 1
2) -19
3) 8
4) The rest of the solutions are not correct
5) -8
6) 5

Exercise 2

Compute $\int_{-2}^{2}((-6+4 t) \operatorname{Sin}[1+2 t]) d t$

1) -16.5968
2) - 15.4771
3) -9.3326
4) -19.7895
5) -25.2302
6) 5.82848

Exercise 3

Compute $\int_{6}^{7}\left(\frac{1}{(-3+t)^{2}}\right) d t$

1) -3.39531
2) 0.0833333
3) -37 .
4) -4.32878
5) -2.84754
6) -2.65543

Exercise 4

Compute $\int_{4}^{5}\left(\frac{-10+10 a+5 t+5 a t}{-4+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 1.54483
2) 1.76283
3) 1.49623
4) 2.02733
5) 2.30333
6) The rest of the solutions are not correct

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(2+4 t) \log (5 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 80
millions euros, compute the deposit available after (with respect to $t=1$) 4 years.

1) $88-4 \log [5]+60 \log [25]$ millions of euros $=274.6948$ millions of euros
2) $59-4 \log [5]+40 \log [20]$ millions of euros $=172.3915$ millions of euros
3) $35-4 \log [5]+84 \log [30]$ millions of euros $=314.2628$ millions of euros
4) $48-4 \log [5]+60 \log [25]$ millions of euros $=234.6948$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(2+8 t)(\cos (2 \pi t)+2)$ euros.
Compute the average value of the shares along the first
6 months of the year (between $t=0$ and $t=6$).

1) $\frac{20}{3}$ euros $=6.6667$ euros
2) $\frac{2}{3}$ euros $=0.6667$ euros
3) 52 euros
4) 2 euros

Exercise 7

Compute the area enclosed by the function $f(x)=4-4 x-x^{2}+x^{3}$ and the horizontal axis between the points $x=-2$ and $x=5$.

1) $\frac{1165}{12}=97.0833$
2) $\frac{1159}{12}=96.5833$
3) $\frac{1189}{12}=99.0833$
4) $\frac{1127}{12}=93.9167$
5) $\frac{1177}{12}=98.0833$
6) $\frac{1141}{12}=95.0833$
7) $\frac{1171}{12}=97.5833$
8) $\frac{857}{12}=71.4167$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}(4+5 t)\right)(\cos (2 \pi t)+2) \quad$ per-unit.
The initial deposit in the account is 20000 euros. Compute the deposit after 3 years.

1) 39874.3107 euros
2) 39934.3107 euros
3) 39944.3107 euros
4) 39954.3107 euros

Mathematics 1-ADE/FyCo - 2020/2021
List of exercises 03-Integration for identity number: 753486173

Exercise 1

Compute $\int_{3 a}^{5}\left(-1+3 a-2 t-12 a t+6 t^{2}-18 a t^{2}+8 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -878
2) - 892
3) -902
4) -882
5) The rest of the solutions are not correct
6) -901

Exercise 2

Compute $\int_{0}^{2}(6 t \operatorname{Cos}[1+2 t]) d t$

1) -30.17
2) -6.13851
3) -19.7114
4) 3.40395
5) -30.5626
6) -24.1583

Exercise 3

Compute $\int_{-4}^{-1}\left(\frac{8}{t^{2}}\right) d \mathrm{t}$

1) -29.873
2) -19.2667
3) 6 .
4) -23.6132
5) -504 .
6) -29.4893

Exercise 4

Compute $\int_{4}^{7}\left(\frac{6-9 \mathrm{a}+3 \mathrm{t}+3 \mathrm{at}}{-6-\mathrm{t}+\mathrm{t}^{2}}\right) \mathrm{dt}$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) 0.350995
3) 1.2164
4) 0.671095
5) 1.1099
6) 0.688595

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=(2+2 t) e^{t}$ millions of euros/year.

If the initial deposit in the investment fund was 90 millions of euros, compute the depositis available after 2 years.

1) $90-\frac{2}{\mathbb{e}}$ millions of euros $=89.2642$ millions of euros
2) $90+6 e^{3}$ millions of euros $=210.5132$ millions of euros
3) $90+4 e^{2}$ millions of euros $=119.5562$ millions of euros
4) $90+2$ e millions of euros $=95.4366$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=20 e^{3+3 t}$ euros .
Compute the average value of the shares along the first
8 months of the year (between $t=0$ and $t=8$).

1) $\frac{1}{8}\left(-\frac{20 e^{3}}{3}+\frac{20 e^{27}}{3}\right)$ euros $=4.4337 \times 10^{11}$ euros
2) $\frac{1}{8}\left(-\frac{20 e^{3}}{3}+\frac{20 e^{9}}{3}\right)$ euros $=6735.832$ euros
3) $\frac{1}{8}\left(\frac{20}{3}-\frac{20 e^{3}}{3}\right)$ euros $=-15.9046$ euros
4) $\frac{1}{8}\left(-\frac{20 e^{3}}{3}+\frac{20 e^{6}}{3}\right)$ euros $=319.4527$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=12 x+2 x^{2}-2 x^{3}$ and the horizontal axis between the points $x=-3$ and $x=4$.

1) $\frac{245}{3}=81.6667$
2) $\frac{481}{6}=80.1667$
3) $\frac{37}{6}=6.1667$
4) $\frac{242}{3}=80.6667$
5) $\frac{469}{6}=78.1667$
6) $\frac{91}{6}=15.1667$
7) $\frac{487}{6}=81.1667$
8) $\frac{239}{3}=79.6667$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{12} e^{-6+2 t}$ per-unit.
The initial deposit in the account is 20000 euros. Compute the deposit after 3 years.

1) 20848.7847 euros
2) 20858.7847 euros
3) 20838.7847 euros
4) 20850.019 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 10618500094

Exercise 1

Compute $\int_{-2 a}^{3}\left(6 a+6 t-8 a t-6 t^{2}-6 a t^{2}-4 t^{3}\right) d t$

- The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -90
2) The rest of the solutions are not correct
3) -88
4) - 74
5) -72
6) -68

Exercise 2

Compute $\int_{-4}^{-1}\left(\left(18 t-9 t^{2}\right) \log [-3 t]\right) d t$

1) -691.245
2) -3302.33
3) -2157.35
4) -821.745
5) 1994.53
6) -1725.8

Exercise 3

Compute $\int_{-1}^{9}\left(\frac{243}{(4+3 t)^{5}}\right) d t$

1) -50.5572
2) -63.1994
3) -2.21876×10^{8}
4) 20.25
5) -48.917
6) -96.7414

Exercise 4

Compute $\int_{3}^{4}\left(\frac{5+8 a-5 \mathrm{t}+4 \mathrm{at}}{-2+\mathrm{t}+\mathrm{t}^{2}}\right) \mathrm{dt}$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) 0.86576
3) 0.75666
4) 1.62186
5) 0.98066
6) 1.67786

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(9+5 t)(\cos (2 \pi t)+1)$ millions of euros/year.
If the initial deposit in the investment fund was 70
millions of euros, compute the depositis available after 3 years.

1) 98 millions of euros
2) $\frac{163}{2}$ millions of euros $=81.5$ millions of euros
3) $\frac{127}{2}$ millions of euros $=63.5$ millions of euros
4) $\frac{239}{2}$ millions of euros $=119.5$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(2-4 t) \cos (3 t)$ euros.
Compute the average value of the shares along the first 3π months of the year (between $t=0$ and $t=3 \pi$).

1) $70+\frac{8}{27 \pi}$ euros $=70.0943$ euros
2) 0 euros
3) $10+\frac{8}{27 \pi}$ euros $=10.0943$ euros
4) $\frac{8}{27 \pi}$ euros $=0.0943$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-6 x+3 x^{2}+3 x^{3}$ and the horizontal axis between the points $x=-1$ and $x=2$.

1) $\frac{45}{4}=11.25$
2) $\frac{65}{4}=16.25$
3) $\frac{69}{4}=17.25$
4) $\frac{63}{4}=15.75$
5) $\frac{55}{4}=13.75$
6) $\frac{19}{4}=4.75$
7) $\frac{71}{4}=17.75$
8) $\frac{67}{4}=16.75$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}(-5+3 t)\right) \cos (2 t)$ per-unit.
The initial deposit in the account is 6000 euros. Compute the deposit after 3π years.

1) 6000 euros
2) 6010 euros
3) 6050 euros
4) 6040 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 10901600079

Exercise 1

Compute $\int_{2 a}^{5}\left(-10 a+10 t+30 a t^{2}-20 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter
a. Compute the derivative of such a formula at the point 0 .

1) 1186
2) 1180
3) 1192
4) 1197
5) 1190
6) The rest of the solutions are not correct

Exercise 2

Compute $\int_{0}^{1}\left(e^{-1+t}\left(-2-t+t^{2}\right)\right) d t$

1) -1.36788
2) -3.39838
3) -3.34061
4) -2.53885
5) -4.17169
6) -4.4322

Exercise 3

Compute $\int_{-3}^{-1}\left(\frac{576}{(-1+4 t)^{3}}\right) d t$

1) -7.48397
2) -7.95134
3) -5.99303
4) 13968 .
5) -2.45396
6) -6.09666

Exercise 4

Compute $\int_{2}^{4}\left(\frac{-3+12 a+3 t+4 a t}{-3+2 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter
a. Compute the derivative of such a formula at the point 0 .

1) 3.95645
2) The rest of the solutions are not correct
3) 4.99395
4) 3.81345
5) 4.39445
6) 3.79075

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(6+6 t)(\sin (2 \pi t)+2)$ millions of euros/year.
If the initial deposit in the investment fund was 20 millions of euros, compute the depositis available after 4 years.

1) $38-\frac{3}{\pi}$ millions of euros $=37.0451$ millions of euros
2) $68-\frac{6}{\pi}$ millions of euros $=66.0901$ millions of euros
3) $164-\frac{12}{\pi}$ millions of euros $=160.1803$ millions of euros
4) $14+\frac{3}{\pi}$ millions of euros $=14.9549$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(3-4 t) \sin (6 t)$ euros.
Compute the average value of the shares along the first
2π months of the year (between $t=0$ and $t=2 \pi$).

1) $-\frac{1}{3}$ euros $=-0.3333$ euros
2) 1 euros
3) $\frac{1}{3}$ euros $=0.3333$ euros
4) $\frac{2}{3}$ euros $=0.6667$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$ $-6+4 x+2 x^{2}$ and the horizontal axis between the points $x=1$ and $x=5$.

1) $\frac{667}{6}=111.1667$
2) $\frac{329}{3}=109.6667$
3) $\frac{338}{3}=112.6667$
4) $\frac{335}{3}=111.6667$
5) $\frac{320}{3}=106.6667$
6) $\frac{649}{6}=108.1667$
7) $\frac{332}{3}=110.6667$
8) $\frac{326}{3}=108.6667$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}(3-4 t)\right) \sin (6 t)$ per-unit.
The initial deposit in the account is 17000 euros. Compute the deposit after 4π years.

1) 18415.5463 euros
2) 18455.5463 euros
3) 18485.5463 euros
4) 18495.5463 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 11116551121

Exercise 1

Compute $\int_{a}^{-1}\left(12+11 a-22 t+16 a t-24 t^{2}+3 a t^{2}-4 t^{3}\right) d t$

- The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -16
2) -20
3) -35
4) -36
5) -22
6) The rest of the solutions are not correct

Exercise 2

Compute $\int_{0}^{1}\left(\left(-2-2 t+t^{2}\right) \operatorname{Sin}[1-t]\right) d t$

1) -1.15585
2) -4.64673
3) 0 .
4) -2.66667
5) -4.94023
6) -4.03587

Exercise 3

Compute $\int_{5}^{9}\left(\frac{5625}{(-3-5 t)^{4}}\right) d t$

1) -4.02019
2) -1.6843
3) -4.27411
4) 0.0136919
5) 7.91979×10^{7}
6) -3.49169

Exercise 4

Compute $\int_{5}^{6}\left(\frac{-5+a-5 t-a t}{-1+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -0.154151
2) -0.379551
3) 0.145049
4) The rest of the solutions are not correct
5) -0.598351
6) -0.901351

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=3 t^{2}+t^{3}+2 t^{4}$ millions of euros/year.
If the initial deposit in the investment fund was 70
millions of euros, compute the depositis available after 3 years.

1) $\frac{3038}{5}$ millions of euros $=607.6$ millions of euros
2) $\frac{4289}{20}$ millions of euros $=214.45$ millions of euros
3) $\frac{1433}{20}$ millions of euros $=71.65$ millions of euros
4) $\frac{474}{5}$ millions of euros $=94.8$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\sin (-4+8 t)$ euros.
Compute the average value of the shares along the first
3π months of the year (between $t=0$ and $t=3 \pi$).

1) - 20 euros
2) 0 euros
3) 70 euros
4) 40 euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$-1+x^{2}$ and the horizontal axis between the points $x=-5$ and $x=0$.

1) $\frac{110}{3}=36.6667$
2) $\frac{79}{2}=39.5$
3) $\frac{85}{2}=42.5$
4) $\frac{81}{2}=40.5$
5) 41
6) 38
7) $\frac{83}{2}=41.5$
8) 42

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\frac{1}{10} \sin (-2+4 t)$ per-unit.

The initial deposit in the account is 17000 euros. Compute the deposit after 3π years.

1) 16950 euros
2) 17000 euros
3) 17070 euros
4) 17040 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 20531650581

Exercise 1

Compute $\int_{-2 a}^{5}\left(4 a+4 t-12 a t-9 t^{2}-12 a t^{2}-8 t^{3}\right) d t$

- The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -631
2) The rest of the solutions are not correct
3) -630
4) -643
5) -639
6) -649

Exercise 2

Compute $\int_{2}^{3}\left(e^{-1-2 t}(4+4 t)\right) d t$

1) -3.60903
2) -2.96293
3) -3.28584
4) -3.84426
5) -0.0804507
6) 0.0389587

Exercise 3

Compute $\int_{-9}^{-5}\left(\frac{64}{(-2-2 t)^{4}}\right) d t$

1) -2.96293
2) -3.60903
3) 338603 .
4) 0.0182292
5) -3.28584
6) -3.84426

Exercise 4

Compute $\int_{3}^{4}\left(\frac{6+8 \mathrm{a}+3 \mathrm{t}-4 \mathrm{at}}{-4+\mathrm{t}^{2}}\right) \mathrm{dt}$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -1.27899
2) The rest of the solutions are not correct
3) -1.33869
4) -1.37439
5) -0.729286
6) -0.817786

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(6+t)(\sin (2 \pi t)+2)$ millions of euros/year.
If the initial deposit in the investment fund was 50 millions of euros, compute the depositis available after 5 years.

1) $63-\frac{1}{2 \pi}$ millions of euros $=62.8408$ millions of euros
2) $39+\frac{1}{2 \pi}$ millions of euros $=39.1592$ millions of euros
3) $78-\frac{1}{\pi}$ millions of euros $=77.6817$ millions of euros
4) $135-\frac{5}{2 \pi}$ millions of euros $=134.2042$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=20 e^{3+2 t}$ euros.
Compute the average value of the shares along the first
6 months of the year (between $t=0$ and $t=6$).

1) $\frac{1}{6}\left(10 e-10 e^{3}\right)$ euros $=-28.9454$ euros
2) $\frac{1}{6}\left(-10 e^{3}+10 e^{5}\right)$ euros $=213.8794$ euros
3) $\frac{1}{6}\left(-10 e^{3}+10 e^{7}\right)$ euros $=1794.246$ euros
4) $\frac{1}{6}\left(-10 e^{3}+10 e^{15}\right)$ euros $=5.4483 \times 10^{6}$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$8-2 x^{2}$ and the horizontal axis between the points $x=-2$ and $x=4$.

1) $\frac{137}{3}=45.6667$
2) $\frac{271}{6}=45.1667$
3) $\frac{265}{6}=44.1667$
4) $\frac{128}{3}=42.6667$
5) 0
6) $\frac{140}{3}=46.6667$
7) $\frac{134}{3}=44.6667$
8) $\frac{283}{6}=47.1667$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\frac{1}{12} e^{-6+3 t}$ per-unit.
The initial deposit in the account is 15000 euros. Compute the deposit after 2 years.

1) 15481.4458 euros
2) 15501.4458 euros
3) 15471.4458 euros
4) 15421.4458 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 20705551589

Exercise 1

Compute $\int_{3 a}^{-3}\left(18 a-12 t+66 a t-33 t^{2}+36 a t^{2}-16 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) -91
3) -86
4) - 97
5) -100
6) -85

Exercise 2

Compute $\int_{-3}^{3}(-2 \operatorname{Cos}[t]) d t$

1) 11.8799
2) -4.77604
3) -4.21642
4) 0 .
5) -0.56448
6) -4.20154

Exercise 3

Compute $\int_{-7}^{-3}\left(\frac{9}{t^{5}}\right) d t$

1) 29230 .
2) -2.77019
3) -4.20154
4) -4.21642
5) -4.77604
6) -0.0268407

Exercise 4

Compute $\int_{0}^{1}\left(\frac{-2-8 a-2 t-4 a t}{2+3 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) -3.61429
3) -3.51219
4) -2.00629
5) -2.11539
6) -2.64609

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(3+3 t)(\sin (2 \pi t)+1)$ millions of euros/year.
If the initial deposit in the investment fund was 60
millions of euros, compute the depositis available after 5 years.

1) $\frac{117}{2}+\frac{3}{2 \pi}$ millions of euros $=58.9775$ millions of euros
2) $\frac{225}{2}-\frac{15}{2 \pi}$ millions of euros $=110.1127$ millions of euros
3) $72-\frac{3}{\pi}$ millions of euros $=71.0451$ millions of euros
4) $\frac{129}{2}-\frac{3}{2 \pi}$ millions of euros $=64.0225$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\cos (2 t)$ euros .
Compute the average value of the shares along the first
π months of the year (between $t=0$ and $t=\pi$).

1) 70 euros
2) - 20 euros
3) 0 euros
4) 80 euros

Exercise 7

Compute the area enclosed by the function $f(x)=-12-14 x+2 x^{3}$ and the horizontal axis between the points $x=-5$ and $x=1$.

1) 171
2) $\frac{441}{2}=220.5$
3) 219
4) 221
5) 216
6) 222
7) 168
8) $\frac{443}{2}=221.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{10} \cos (5+3 t)$ per-unit.
The initial deposit in the account is 8000 euros. Compute the deposit after 2π years.

1) 8090 euros
2) 7950 euros
3) 8000 euros
4) 8030 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 20714551324

Exercise 1

Compute $\int_{3 a}^{2}\left(-6-3 a+2 t-54 a t+27 t^{2}+36 a t^{2}-16 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 4
2) 2
3) The rest of the solutions are not correct
4) 0
5) -18
6) -12

Exercise 2

Compute $\int_{2}^{3}(-2 \operatorname{Cos}[t]) d t$

1) -5.15814
2) -5.23793
3) 4.27537
4) 1.53635
5) 2.79047
6) -7.39363

Exercise 3

Compute $\int_{-8}^{-5}\left(\frac{8}{t}\right) d t$

1) -3.76003
2) -0.470004
3) -12.8191
4) -12.6239
5) -18.095
6) -12.3667

Exercise 4

Compute $\int_{2}^{4}\left(\frac{2+8 a+2 t+4 a t}{2+3 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 1.9795
2) 1.1626
3) 2.0433
4) 1.0464
5) 2.1669
6) The rest of the solutions are not correct

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(8+6 t)(\cos (2 \pi t)+2)$ millions of euros/year.
If the initial deposit in the investment fund was 60
millions of euros, compute the depositis available after 5 years.

1) 290 millions of euros
2) 50 millions of euros
3) $\mathbf{1 1 6}$ millions of euros
4) 82 millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\cos (-8+7 t)$ euros.
Compute the average value of the shares along the first
3π months of the year (between $t=0$ and $t=3 \pi$).

1) $80+\frac{2 \operatorname{Sin}[8]}{21 \pi}$ euros $=80.03$ euros
2) $60+\frac{2 \operatorname{Sin}[8]}{21 \pi}$ euros $=60.03$ euros
3) $\frac{2 \operatorname{Sin}[8]}{21 \pi}$ euros $=0.03$ euros
4) $90+\frac{2 \operatorname{Sin}[8]}{21 \pi}$ euros $=90.03$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-12-14 x+2 x^{3}$ and the horizontal axis between the points $x=-5$ and $x=0$.

1) 203
2) $\frac{395}{2}=197.5$
3) $\frac{405}{2}=202.5$
4) $\frac{407}{2}=203.5$
5) $\frac{373}{2}=186.5$
6) 202
7) $\frac{401}{2}=200.5$
8) $\frac{379}{2}=189.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{10} \cos (4+8 t)$ per-unit.
The initial deposit in the account is 8000 euros. Compute the deposit after 4π years.

1) 7970 euros
2) 8000 euros
3) 8050 euros
4) 8007.901 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 20730551515

Exercise 1

Compute $\int_{a}^{1}\left(-6 a+12 t-14 a t+21 t^{2}+9 a t^{2}-12 t^{3}\right) d t$

- The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -14
2) - 13
3) -10
4) -3
5) -1
6) The rest of the solutions are not correct

Exercise 2

Compute $\int_{-1}^{2}(\operatorname{Sin}[3+t]) d t$

1) -0.699809
2) -2.95518
3) -3.13767
4) -1.00855
5) -2.83255
6) -0.151178

Exercise 3

Compute $\int_{-6}^{-2}\left(\frac{768}{(-2+4 t)^{4}}\right) d t$

1) -2.95518
2) 0.0603587
3) -3.13767
4) -3.92713×10^{6}
5) -2.2437
6) -2.83255

Exercise 4

Compute $\int_{2}^{4}\left(\frac{3+a-3 t+a t}{-1+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) 0.973412
3) 0.711212
4) 1.07341
5) 1.09861
6) 0.435612

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=2+2 t+3 t^{3}$ millions of euros/year.
If the initial deposit in the investment fund was 40
millions of euros, compute the depositis available after 2 years.

1) 256 millions of euros
2) $\frac{175}{4}$ millions of euros $=43.75$ millions of euros
3) 60 millions of euros
4) $\frac{463}{4}$ millions of euros $=115.75$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(-7+8 t) \sin (6 t)$ euros.
Compute the average value of the shares along the first
π months of the year (between $t=0$ and $t=\pi$).

1) - 4 euros
2) $\frac{4}{3}$ euros $=1.3333$ euros
3) $-\frac{8}{3}$ euros $=-2.6667$ euros
4) $-\frac{4}{3}$ euros $=-1.3333$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$1-x^{2}$ and the horizontal axis between the points $x=-1$ and $x=5$.

1) $\frac{253}{6}=42.1667$
2) $\frac{247}{6}=41.1667$
3) $\frac{128}{3}=42.6667$
4) $\frac{122}{3}=40.6667$
5) 36
6) $\frac{116}{3}=38.6667$
7) $\frac{125}{3}=41.6667$
8) $\frac{241}{6}=40.1667$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\left(\frac{1}{100}(8-8 t)\right) \sin (2 t)$ per-unit.
The initial deposit in the account is 5000 euros. Compute the deposit after 4π years.

1) 8256.7551 euros
2) 8295.5208 euros
3) 8265.5208 euros
4) 8205.5208 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 20902651249

Exercise 1

Compute $\int_{-3}^{5}\left(-9+9 a+6 t+36 a t+18 t^{2}-18 a t^{2}-8 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -276
2) -283
3) The rest of the solutions are not correct
4) -282
5) -272
6) - 296

Exercise 2

Compute $\int_{-2}^{3}((-6+6 t) \operatorname{Cos}[1+2 t]) d t$

1) 30.5449
2) -16.3524
3) -21.1282
4) 5.28768
5) -25.5676
6) -15.1273

Exercise 3

Compute $\int_{1}^{2}\left(\frac{5}{t^{4}}\right) d t$

1) 1.45833
2) -5.82712
3) -7.05151
4) -4.17209
5) -4.50998
6) 330.667

Exercise 4

Compute $\int_{5}^{6}\left(\frac{-10+9 a-5 t-3 a t}{-6-t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter
a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) -1.02389
3) -0.915494
4) -1.34619
5) -1.38049
6) -0.400594

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=(2+t) e^{3+3 t}$ millions of euros/year.

If the initial deposit in the investment fund was 50 millions of euros, compute the depositis available after 2 years.

1) $50-\frac{5 e^{3}}{9}+\frac{11 e^{9}}{9}$ millions of euros $=9942.6106$ millions of euros
2) $50-\frac{5 e^{3}}{9}+\frac{8 e^{6}}{9}$ millions of euros $=397.4447$ millions of euros
3) $\frac{452}{9}-\frac{5 e^{3}}{9}$ millions of euros $=39.0636$ millions of euros
4) $50-\frac{5 e^{3}}{9}+\frac{14 e^{12}}{9}$ millions of euros $=253212.9614$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=20 e^{-1+t}$ euros .
Compute the average value of the shares along the first
8 months of the year (between $t=0$ and $t=8$).

1) $\frac{1}{8}\left(\frac{20}{e^{2}}-\frac{20}{e}\right)$ euros $=-0.5814$ euros
2) $\frac{1}{8}\left(-\frac{20}{e}+20 e^{7}\right)$ euros $=2740.6632$ euros
3) $\frac{1}{8}\left(-\frac{20}{e}+20 \mathbb{e}\right)$ euros $=5.876$ euros
4) $\frac{1}{8}\left(20-\frac{20}{e}\right)$ euros $=1.5803$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=12 x+2 x^{2}-2 x^{3}$ and the horizontal axis between the points $x=-5$ and $x=1$.

1) 252
2) $\frac{826}{3}=275.3333$
3) $\frac{719}{3}=239.6667$
4) $\frac{820}{3}=273.3333$
5) 261
6) $\frac{1649}{6}=274.8333$
7) $\frac{1655}{6}=275.8333$
8) $\frac{829}{3}=276.3333$

Exercise 8

Certain bank account offers a variable continuous compound interes rate. The interest rate for each year is given by the function $I(t)=\frac{1}{13} e^{-6+2 t}$ per-unit.

The initial deposit in the account is 12000 euros. Compute the deposit after 3 years.

1) 12529.3403 euros
2) 12509.3403 euros
3) 12469.3403 euros
4) 12449.3403 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 21104501336

Exercise 1

Compute $\int_{-2 a}^{-1}\left(-2+14 a+14 t-28 a t-21 t^{2}+12 a t^{2}+8 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -53
2) The rest of the solutions are not correct
3) -30
4) -36
5) -48
6) -47

Exercise 2

Compute $\int_{0}^{3}\left(e^{2-3 t}(-6-6 t)\right) d t$

1) -78.5191
2) -98.3279
3) -19.6962
4) -0.0410347
5) 0.0136782
6) -71.4916

Exercise 3

Compute $\int_{3}^{6}\left(-\frac{384}{(5-4 t)^{3}}\right) d t$

1) -63960 .
2) -3.54955
3) -3.62971
4) -4.99222
5) 0.846628
6) -3.9865

Exercise 4

Compute $\int_{0}^{1}\left(\frac{9+8 a+3 t+4 a t}{6+5 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 0.735428
2) 1.16173
3) The rest of the solutions are not correct
4) 0.891928
5) 0.878728
6) 1.15073

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=(6+8 t)(\cos (2 \pi t)+2)$ millions of euros/year.
If the initial deposit in the investment fund was 30
millions of euros, compute the depositis available after 4 years.

1) 26 millions of euros
2) 86 millions of euros
3) 206 millions of euros
4) 50 millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=2+2 t+t^{2}+t^{3}+3 t^{4}$ euros.
Compute the average value of the shares along the first
6 months of the year (between $t=0$ and $t=6$).

1) $\frac{4258}{5}$ euros $=851.6$ euros
2) $\frac{254}{45}$ euros $=5.6444$ euros
3) $\frac{251}{360}$ euros $=0.6972$ euros
4) $\frac{1267}{40}$ euros $=31.675$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$18+15 x+3 x^{2}$ and the horizontal axis between the points $x=2$ and $x=5$.

1) $\frac{665}{2}=332.5$
2) $\frac{667}{2}=333.5$
3) 330
4) 332
5) $\frac{661}{2}=330.5$
6) $\frac{657}{2}=328.5$
7) $\frac{663}{2}=331.5$
8) 331

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\frac{1}{100}$ per-unit.
The initial deposit in the account is 20000 euros. Compute the deposit after 2 years.

1) 20454.0268 euros
2) 20404.0268 euros
3) 20424.0268 euros
4) 20414.0268 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 21130550766

Exercise 1

Compute $\int_{3 a}^{2}\left(2-33 a+22 t+18 a t-9 t^{2}+36 a t^{2}-16 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 55
2) 62
3) The rest of the solutions are not correct
4) 48
5) 44
6) 60

Exercise 2

Compute $\int_{1}^{2}(-2 t \cos [2-t]) d t$

1) -11.9125
2) -11.4644
3) -11.639
4) -2.60234
5) -11.4894
6) -0.841471

Exercise 3

Compute $\int_{-2}^{-1}\left(-\frac{3}{(1-t)^{3}}\right) d t$

1) -4.40543
2) -4.47253
3) -4.57761
4) -4.41505
5) 32.5
6) -0.208333

Exercise 4

Compute $\int_{2}^{4}\left(\frac{-2+6 a-2 t+3 a t}{2+3 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 1.23928
2) 1.41938
3) 1.53248
4) 1.43278
5) The rest of the solutions are not correct
6) 0.978477

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=(6+6 t) e^{-2+2 t} \mathrm{millions}$ of euros/year.

If the initial deposit in the investment fund was 60 millions of euros, compute the depositis available after 2 years.

1) $\frac{129}{2}-\frac{3}{2 e^{2}}$ millions of euros $=64.297$ millions of euros
2) $60-\frac{3}{2 e^{4}}-\frac{3}{2 e^{2}}$ millions of euros $=59.7695$ millions of euros
3) $60-\frac{3}{2 e^{2}}+\frac{15 e^{2}}{2}$ millions of euros $=115.2149$ millions of euros
4) $60-\frac{3}{2 e^{2}}+\frac{21 e^{4}}{2}$ millions of euros $=633.0776$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=\cos (-2+3 t)$ euros.
Compute the average value of the shares along the first
π months of the year (between $t=0$ and $t=\pi$).

1) $40+\frac{2 \operatorname{Sin}[2]}{3 \pi}$ euros $=40.193$ euros
2) $30+\frac{2 \operatorname{Sin}[2]}{3 \pi}$ euros $=30.193$ euros
3) $90+\frac{2 \operatorname{Sin}[2]}{3 \pi}$ euros $=90.193$ euros
4) $\frac{2 \operatorname{Sin}[2]}{3 \pi}$ euros $=0.193$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=-4-2 x+4 x^{2}+2 x^{3}$ and the horizontal axis between the points $x=-3$ and $x=4$.

1) $\frac{1043}{6}=173.8333$
2) $\frac{598}{3}=199.3333$
3) $\frac{1199}{6}=199.8333$
4) $\frac{1181}{6}=196.8333$
5) $\frac{595}{3}=198.3333$
6) $\frac{1117}{6}=186.1667$
7) $\frac{1193}{6}=198.8333$
8) $\frac{369}{2}=184.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\frac{1}{10} \cos (-2+5 t)$ per-unit.
The initial deposit in the account is 7000 euros. Compute the deposit after 4π years.

1) 7030 euros
2) 7040 euros
3) 7090 euros
4) 7000 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 30216550613

Exercise 1

Compute $\int_{2 a}^{-5}\left(3-14 a+14 t+4 a t-3 t^{2}+6 a t^{2}-4 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) -149
2) -151
3) -156
4) The rest of the solutions are not correct
5) -136
6) -134

Exercise 2

Compute $\int_{3}^{6}((3-t) \log [t]) d t$

1) -1.33127
2) -24.1344
3) -7.19376
4) -4.94376
5) -25.1432
6) -32.8728

Exercise 3

Compute $\int_{-2}^{0}\left(\frac{729}{(3-3 t)^{4}}\right) d t$

1) 19602 .
2) -6.04435
3) 2.88889
4) -13.2011
5) -9.69195
6) -10.0971

Exercise 4

Compute $\int_{4}^{6}\left(\frac{2+3 a-t+3 a t}{-2-t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) The rest of the solutions are not correct
2) 2.76844
3) 2.97264
4) 1.64904
5) 2.07944
6) 1.86754

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function $v(t)=(8+5 t) e^{1+t}$ millions of euros/year.

If the initial deposit in the investment fund was 70 millions of euros, compute the depositis available after 1 year.

1) $70-3 e+13 e^{3}$ millions of euros $=322.9571$ millions of euros
2) 68-3e millions of euros $=59.8452$ millions of euros
3) $70-3 e+18 e^{4}$ millions of euros $=1044.6119$ millions of euros
4) $70-3 e+8 e^{2}$ millions of euros $=120.9576$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(4+3 t)(\sin (2 \pi t)+1) \quad$ euros.
Compute the average value of the shares along the first
6 months of the year (between $t=0$ and $t=6$).

1) $\frac{1}{6}\left(-\frac{5}{2}+\frac{3}{2 \pi}\right)$ euros $=-0.3371$ euros
2) $\frac{1}{6}\left(14-\frac{3}{\pi}\right)$ euros $=2.1742$ euros
3) $\frac{1}{6}\left(\frac{11}{2}-\frac{3}{2 \pi}\right)$ euros $=0.8371$ euros
4) $\frac{1}{6}\left(78-\frac{9}{\pi}\right)$ euros $=12.5225$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$6+3 x-3 x^{2}$ and the horizontal axis between the points $x=-1$ and $x=4$.

1) $\frac{79}{2}=39.5$
2) $\frac{91}{2}=45.5$
3) $\frac{89}{2}=44.5$
4) $\frac{25}{2}=12.5$
5) $\frac{85}{2}=42.5$
6) $\frac{83}{2}=41.5$
7) 42
8) $\frac{87}{2}=43.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\left(\frac{1}{100}(4+3 t)\right)(\sin (2 \pi t)+1) \quad$ per-unit.

The initial deposit in the account is 5000 euros. Compute the deposit after 5 years.

1) 8746.0354 euros
2) 8756.0354 euros
3) 8676.0354 euros
4) 8716.0354 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number:

30312650522

Exercise 1

Compute $\int_{3 a}^{0}\left(-3+24 a-16 t+6 a t-3 t^{2}-36 a t^{2}+16 t^{3}\right) d t$

- The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) 25
2) -10
3) The rest of the solutions are not correct
4) 14
5) 1
6) 9

Exercise 2

Compute $\int_{-2}^{2}((-3+3 t) \operatorname{Sin}[2+t]) d t$

1) 12 .
2) -38.0145
3) -34.1604
4) -27.4375
5) 0 .
6) -9.30948

Exercise 3

Compute $\int_{3}^{4}\left(\frac{20}{-3+4 t}\right) d t$

1) 0.367725
2) -6.74669
3) -7.50787
4) -5.41892
5) -5.09906
6) 1.83862

Exercise 4

Compute $\int_{4}^{5}\left(\frac{-3-15 a+3 t+5 a t}{3-4 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter
a. Compute the derivative of such a formula at the point 0 .

1) 1.43841
2) 0.48241
3) 2.07681
4) The rest of the solutions are not correct
5) 1.49041
6) 1.12431

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=\left(1+t+3 t^{2}\right) \log (3 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 70
millions euros, compute the deposit available after (with respect to $t=1$) 4 years.

1) $\frac{169}{4}-\frac{5 \log [3]}{2}+76 \log [12]$ millions of euros $=228.3564$ millions of euros
2) $\frac{236}{3}-\frac{5 \log [3]}{2}+\frac{285 \log [15]}{2}$ millions of euros $=461.8173$ millions of euros
3) $-\frac{185}{12}-\frac{5 \log [3]}{2}+240 \log [18]$ millions of euros $=675.526$ millions of euros
4) $\frac{56}{3}-\frac{5 \log [3]}{2}+\frac{285 \log [15]}{2}$ millions of euros $=401.8173$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=(-3-4 t) \cos (3 t)$ euros.
Compute the average value of the shares along the first
3π months of the year (between $t=0$ and $t=3 \pi$).

1) $\frac{8}{27 \pi}$ euros $=0.0943$ euros
2) 0 euros
3) $20+\frac{8}{27 \pi}$ euros $=20.0943$ euros
4) $50+\frac{8}{27 \pi}$ euros $=50.0943$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$6-5 x-2 x^{2}+x^{3}$ and the horizontal axis between the points $x=0$ and $x=5$.

1) $\frac{643}{12}=53.5833$
2) $\frac{485}{12}=40.4167$
3) $\frac{613}{12}=51.0833$
4) $\frac{637}{12}=53.0833$
5) $\frac{137}{4}=34.25$
6) $\frac{631}{12}=52.5833$
7) $\frac{649}{12}=54.0833$
8) $\frac{655}{12}=54.5833$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function
$I(t)=\left(\frac{1}{100}(3-2 t)\right) \cos (6 t)$ per-unit.
The initial deposit in the account is 20000 euros. Compute the deposit after 4π years.

1) 19990 euros
2) 20050 euros
3) 19970 euros
4) 20000 euros

Mathematics 1 - ADE/FyCo - 2020/2021

List of exercises 03-Integration for identity number: 30509500045

Exercise 1

Compute $\int_{3 a}^{-5}\left(1-9 a+6 t+6 a t-3 t^{2}+27 a t^{2}-12 t^{3}\right) d t$
. The resulting expression is a formula in terms of parameter a. Compute the derivative of such a formula at the point 0 .

1) - 1014
2) The rest of the solutions are not correct
3) -1008
4) -998
5) -996
6) -1003

Exercise 2

Compute $\int_{-3}^{2}(-2 \operatorname{Cos}[1-2 t]) d t$

1) -4.62338
2) 1.68872
3) -4.93629
4) -0.798107
5) -0.563444
6) -4.14798

Exercise 3

Compute $\int_{4}^{8}\left(\frac{3}{(1-\mathrm{t})^{4}}\right) d \mathrm{t}$

1) -4.93629
2) -3.49029
3) -4.62338
4) 5521.33
5) 0.0341216
6) -4.14798

Exercise 4

Compute $\int_{-1}^{0}\left(\frac{-10-15 a-5 t-5 a t}{6+5 t+t^{2}}\right) d t$
. The resulting expression is a formula in terms of parameter
a. Compute the derivative of such a formula at the point 0 .

1) -3.28854
2) -3.92794
3) -3.46574
4) The rest of the solutions are not correct
5) -3.72094
6) -4.22244

Exercise 5

The deposits of an investment fund vary from one year to
another being the speed of that variation determined by the function
$v(t)=\left(4+t+3 t^{2}\right) \log (5 t)$ millions of euros/year.
If, for $t=1$, the deposits in the investment fund were 60
millions euros, compute the deposit available after (with respect to $t=1$) 5 years.

1) $-\frac{10}{3}-\frac{11 \log [5]}{2}+\frac{315 \log [25]}{2}$ millions of euros $=494.7877$ millions of euros
2) $\frac{235}{12}-\frac{11 \log [5]}{2}+258 \log [30]$ millions of euros $=888.2403$ millions of euros
3) $-\frac{485}{12}-\frac{11 \log [5]}{2}+258 \log [30]$ millions of euros $=828.2403$ millions of euros
4) $\frac{93}{4}-\frac{11 \log [5]}{2}+88 \log [20]$ millions of euros $=278.0225$ millions of euros

Exercise 6

The true value of certain shares oscillates along the year.
The following function yields the value of the shares for each month t :
$V(t)=30 e^{2+t}$ euros .
Compute the average value of the shares along the first
8 months of the year (between $t=0$ and $t=8$).

1) $\frac{1}{8}\left(30 e-30 e^{2}\right)$ euros $=-17.5154$ euros
2) $\frac{1}{8}\left(-30 e^{2}+30 e^{3}\right)$ euros $=47.6118$ euros
3) $\frac{1}{8}\left(-30 e^{2}+30 e^{10}\right)$ euros $=82571.5378$ euros
4) $\frac{1}{8}\left(-30 e^{2}+30 e^{4}\right)$ euros $=177.0341$ euros

Exercise 7

Compute the area enclosed by the function $f(x)=$
$24+8 x-6 x^{2}-2 x^{3}$ and the horizontal axis between the points $x=0$ and $x=3$.

1) 69
2) 68
3) $\frac{141}{2}=70.5$
4) $\frac{133}{2}=66.5$
5) $\frac{139}{2}=69.5$
6) 70
7) $\frac{137}{2}=68.5$
8) $\frac{27}{2}=13.5$

Exercise 8

Certain bank account offers a variable continuous compound
interes rate. The interest rate for each year is given by the function $I(t)=\frac{1}{15} e^{-6+2 t}$ per-unit.

The initial deposit in the account is 5000 euros. Compute the deposit after 3 years.

1) 5149.0485 euros
2) 5249.0485 euros
3) 5190.2828 euros
4) 5169.0485 euros
