Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} -1 & -6 & -2 & -2 \\ 2 & 6 & 3 & 2 \\ 1 & 3 & 2 & 1 \\ -2 & -1 & -2 & 0 \end{pmatrix}$.

Ejercicio 2

¿Cuántas de las uplas

$$(1 -2 1 -1)$$
, $(-1 2 -1 0)$, $(0 -1 -2 2)$,

son independientes?

Ejercicio 3

Comprobar si la upla (-6 6 7) es combinación lineal de la uplas

$$(-2\ 2\ 2)$$
, $(-1\ 1\ 1)$, $(-2\ 2\ 1)$, $(-4\ 4\ 2)$, $(-3\ 3\ 2)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{1} & -2 \\ -3 & 7 \end{array}\right) . X . \left(\begin{array}{cc} -\mathbf{1} & -\mathbf{1} \\ 0 & -\mathbf{1} \end{array}\right) = \left(\begin{array}{cc} 3 & 0 \\ -\mathbf{10} & 0 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cc} -2 & \star \\ \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cc} 0 & \star \\ \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cc} 1 & \star \\ \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cc} -1 & \star \\ \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{cc} \star & -2 \\ \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} 0 & -1 & 0 & -2 \\ -3 & -1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & a \end{pmatrix} \text{ tenga determinante igual a 2?}$$

Encontrar la solución del sistema

$$\begin{array}{l} 4\;x_1\,+\,5\;x_2\,-\,x_3\,+\,x_4\,-\,2\;x_5\,=\,1 \\ 3\;x_1\,-\,5\;x_2\,+\,2\;x_3\,-\,3\;x_4\,+\,7\;x_5\,=\,1 \end{array}$$

$$7 x_1 + x_3 - 2 x_4 + 5 x_5 == 2$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 4 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -34 \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -25 \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 3 \\ 3 \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ -3 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -37 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -24 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -1 \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	6K	9K	8K	9K
harinas vegetales	4K	6K	5K	7K
harinas de pescado	11K	17K	16K	13K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 111K 78K 192K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 13.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} -1 & -1 & 1 & 2 \\ 1 & 1 & 0 & -1 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} ? & 2 & -1 & -2 \\ -1 & ? & 1 & 3 \\ 1 & 1 & ? & -1 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -4 & -3 & 3 \\ 8 & ? & -5 & 5 \\ -1 & 1 & ? & -1 \\ 2 & -2 & -1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -3 & 0 & -1 \\ 2 & ? & -1 & 0 \\ -1 & 1 & ? & 0 \\ -2 & 2 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & -2 & 0 \\ -2 & ? & 0 & 1 \\ 1 & -2 & ? & 0 \\ -3 & 3 & 2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & 3 & -4 \\ 3 & ? & -2 & 4 \\ -1 & -1 & ? & -3 \\ -3 & -2 & 3 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 2 & -2 \\ 1 & ? & 0 & 0 \\ 1 & 1 & ? & 0 \\ 0 & 1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -2 & 0 \\ 2 & ? & -5 & 0 \\ 0 & 1 & ? & 0 \\ 0 & 0 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(0\ 0\ -2\ -2\ 0)$$
, $(-2\ 0\ -2\ 2\ 2)$, $(2\ -2\ 0\ 1\ -1)$, $(2\ 2\ -1\ -2\ 2)$, $(1\ 2\ -1\ 2\ 1)$, son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5

Ejercicio 3

Comprobar si la upla $(-5\ 6\ -7\ -4\)$ es combinación lineal de la uplas

(
$$-4$$
 0 -2 -4), (-1 -2 1 -1), (-2 0 -1 -2),

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X + \left(\begin{array}{ccc} 0 & -1 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{array}\right)\right) \boldsymbol{.} \left(\begin{array}{ccc} 2 & -1 & 3 \\ -1 & 1 & -2 \\ -1 & 1 & -1 \end{array}\right) = \left(\begin{array}{ccc} 0 & 0 & 2 \\ -4 & 3 & -7 \\ -1 & 1 & -1 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & \star & 1 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & \star & \star \\ -2 & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} -2 & 1 & 1 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ a & 1 & -2 & 2 \end{pmatrix} \text{ tenga determinante igual a 6? }$$

$$1) \quad -1 \qquad 2) \quad 2 \qquad 3) \quad -5 \qquad 4) \quad -3 \qquad 5) \quad 1$$

Encontrar la solución del sistema

$$-4 x_1 - 5 x_2 + 2 x_3 == 0$$

 $x_1 + 2 x_2 == 0$
 $2 x_1 + 3 x_2 - x_3 == 2$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

- 1) $\begin{pmatrix} ? \\ ? \\ -8 \end{pmatrix}$
- $2) \quad \begin{pmatrix} -8 \\ ? \\ ? \end{pmatrix}$
- 3) (-6)
- 4) $\begin{pmatrix} ? \\ ? \\ 4 \end{pmatrix} + \langle \begin{pmatrix} -8 \\ ? \\ ? \end{pmatrix} \rangle$
- 5) $\begin{pmatrix} 8 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ -8 \end{pmatrix}, \begin{pmatrix} 10 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 7 \\ ? \end{pmatrix} \rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	5K	6K	6K	14K
harinas vegetales	4K	4K	5K	12K
harinas de pescado	1K	0K	1K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 38K 29K 5K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 7.
- 1) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & -1 & 0 \end{pmatrix}.$$

$$1) \quad \begin{pmatrix} ? & -2 & -1 & 0 \\ -1 & ? & 1 & 1 \\ -2 & 6 & ? & 2 \\ -1 & 2 & 1 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -2 & 0 & -1 \\ -1 & ? & 0 & -1 \\ -4 & 0 & ? & -1 \\ 5 & 1 & 2 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & 0 & 1 & -1 \\ -1 & ? & 0 & 1 \\ -1 & 0 & ? & 0 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & -2 & 1 \\ 0 & ? & 2 & 0 \\ 0 & -1 & ? & 1 \\ 0 & 1 & 5 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & 1 \\ -2 & ? & 1 & 0 \\ 0 & -1 & ? & -1 \\ -2 & 0 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -1 & 1 \\ 5 & ? & 1 & -1 \\ 3 & 1 & ? & -1 \\ 2 & 1 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 1 & ? & 0 & 3 \\ 0 & 2 & ? & 1 \\ 0 & -2 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -3 \ \ -1 \ \ -3 \ \ 0 \) \text{, } (\ 1 \ \ 1 \ \ -1 \ \ -2 \) \text{, } (\ 2 \ \ 0 \ \ 0 \) \text{, } (\ 1 \ \ 1 \ \ 1 \ \ 0 \) \text{, } (\ -2 \ \ 0 \ \ -2 \ \ 0 \) \text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (-6 2 -6) es combinación lineal de la uplas

$$(1\ 0\ 2)$$
, $(0\ 1\ 3)$, $(-1\ 1\ 1)$, $(-2\ 2\ 2)$, $(-2\ 1\ -1)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X-\left(\begin{array}{cc}-2&-3\\1&1\end{array}\right)\right)\boldsymbol{.}\left(\begin{array}{cc}0&-1\\1&0\end{array}\right)=\left(\begin{array}{cc}4&-1\\-1&2\end{array}\right)$$

$$1)\quad \left(\begin{array}{cc} -2 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{cc} 0 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{cc} 1 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{cc} 2 & \star \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{cc} \star & 1 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} -1 & -1 & 1 & 1 \\ -2 & -1 & 0 & -1 \\ 0 & -2 & 0 & -1 \\ a & 0 & 1 & 1 \end{pmatrix}$$
 tenga determinante igual a -1?

$$1) \quad -1 \qquad 2) \quad -4 \qquad 3) \quad 2 \qquad 4) \quad -2 \qquad 5) \quad -3$$

Encontrar la solución del sistema

$$2 x_2 + 2 x_3 - 2 x_4 - 3 x_5 == -2$$

 $8 x_2 + 8 x_3 + x_5 == 8$
 $-5 x_2 - 5 x_3 + x_4 + x_5 == -3$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

3)
$$\begin{pmatrix} ? \\ -2 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -7 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 12 \\ ? \end{pmatrix}$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -6 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ 3 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 9 \\ ? \end{pmatrix} \rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	4K	3K	1K
Pienso marca 2	4K	2K	ØK
Pienso marca 3	4K	3K	ØK
Pienso marca 4	1K	1K	1K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 41K 26K 1K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 4) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=5, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} -4 & 1 & 3 & -4 \\ -2 & 1 & 2 & -1 \\ -5 & 1 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} ? & -1 & -1 & 0 \\ -4 & ? & 3 & -1 \\ -3 & 2 & ? & -1 \\ -1 & 1 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & -3 \\ 1 & ? & 0 & -2 \\ -1 & 2 & ? & 0 \\ -1 & 1 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 1 & -1 \\ 0 & ? & 1 & -1 \\ -1 & 2 & ? & 2 \\ 0 & 0 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 1 \\ 0 & ? & -1 & 0 \\ 0 & -1 & ? & 1 \\ 2 & -2 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

son independientes?

Ejercicio 3

Comprobar si la upla (-1 -6 8 2) es combinación lineal de la uplas

$$(2\ 2\ -1\ -2)$$
, $(4\ 4\ -2\ -4)$,

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cccc} 0 & -1 & 1 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{array}\right) \boldsymbol{.} \left(X + \left(\begin{array}{cccc} 1 & 1 & 0 \\ -1 & -1 & 1 \\ 1 & 0 & 0 \end{array}\right)\right) = \left(\begin{array}{cccc} 1 & 2 & 0 \\ -3 & -4 & -1 \\ -1 & 0 & -1 \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 1 & -1 & -1 & 1 \\ a & 2 & -1 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 0 & -1 \end{pmatrix} \text{ tenga determinante igual a } -13?$$

Encontrar la solución del sistema

$$\begin{array}{l} 3\;x_1-3\;x_2-4\;x_3+x_4=5\\ x_1-2\;x_3+2\;x_4=0\\ -2\;x_1+2\;x_2+3\;x_3+5\;x_4=1 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

- . Expresar la solución mediante combinaciones lineales.
- 1) $\begin{pmatrix} ? \\ 5 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -15 \\ ? \\ ? \end{pmatrix} \right\rangle$
- 2) (?)
- 3) $\begin{pmatrix} ? \\ 5 \\ ? \end{pmatrix} + \langle \begin{pmatrix} -38 \\ ? \\ ? \\ ? \end{pmatrix} \rangle$
- 4) $\begin{pmatrix} ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -36 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$
- 5) $\begin{pmatrix} ? \\ ? \\ -7 \\ 2 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ -9 \\ ? \\ ? \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ -2 \\ ? \\ ? \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 10 \\ 2 \end{pmatrix} \rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	2K	1K	1K	1K
harinas vegetales	8K	5K	9K	10K
harinas de pescado	8K	5K	8K	9K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 12K 99K 90K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=5
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 2 & -2 & 1 & 0 \\ -1 & 2 & -1 & 0 \\ 1 & -3 & 2 & -1 \\ -1 & 2 & -1 & 1 \end{pmatrix} .$$

$$1) \begin{pmatrix} ? & -13 & -15 & -1 \\ 1 & ? & -2 & 0 \\ -2 & 3 & ? & 0 \\ -6 & 11 & 12 & ? \end{pmatrix} \quad 2) \begin{pmatrix} ? & -4 & -3 & 1 \\ 1 & ? & 3 & 0 \\ 1 & 3 & ? & 1 \\ -2 & -5 & -5 & ? \end{pmatrix} \quad 3) \begin{pmatrix} ? & -3 & -2 & -4 \\ 1 & ? & 1 & 2 \\ 0 & 0 & ? & -1 \\ 0 & -1 & -2 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & 1 & 0 & 0 \\ 1 & ? & 1 & 1 \\ 1 & 2 & ? & 2 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 5) \begin{pmatrix} ? & -2 & 1 & 1 \\ 1 & ? & 1 & 1 \\ 1 & -2 & ? & 2 \\ 2 & -3 & 1 & ? \end{pmatrix} \quad 6) \begin{pmatrix} ? & -1 & 0 & 2 \\ 9 & ? & -5 & 3 \\ 0 & -3 & ? & 2 \\ 2 & 0 & -1 & ? \end{pmatrix} \quad 7) \begin{pmatrix} ? & -1 & 1 & 0 \\ -1 & ? & 0 & 0 \\ 1 & 0 & ? & 0 \\ 1 & 0 & -1 & ? \end{pmatrix}$$

Ejercicio 2

```
¿Cuántas de las uplas
(0 1 2 1 -1), (1 -1 2 2 0), (2 0 -1 2 2), (1 -2 2 0 0),
son independientes?

1) 1 2) 2 3) 3 4) 4
```

Ejercicio 3

```
Comprobar si la upla (5 -7 5 -7) es combinación lineal de la uplas (1 -1 2 2), (-2 1 0 -3), (-1 -1 3 1), (-1 2 -3 -4), (0 1 -1 -2), (2 0 -1 1), (1 -1 2 2)
```

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 3 \\ 0 & 0 & -1 \end{pmatrix} \cdot X - \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & -1 \\ -2 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 2 \\ -6 & -3 & -3 \\ 3 & 2 & 0 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & -1 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 2 & -2 & -3 & 2 \\ -1 & 2 & 1 & -2 \\ 1 & 1 & -2 & a \\ -1 & 1 & 2 & -2 \end{pmatrix} \text{ tenga determinante igual a } -3?$$

Encontrar la solución del sistema

$$10 \ x_1 - x_2 + 5 \ x_3 + 2 \ x_4 + 3 \ x_5 == 1$$
$$2 \ x_1 + x_3 - 4 \ x_4 == -3$$

10
$$x_1 - 4 x_2 + 7 x_3 + 4 x_4 - 8 x_5 == 3$$

15 $x_1 - 2 x_2 + 8 x_3 - 2 x_4 + x_5 == -2$

tomando como parámetro, si ello fuera necesario, las

últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

por dudas, comenzaremos sereceronando coraminas de izquierda d

. Expresar la solución mediante combinaciones lineales.

$$\mathbf{1})\quad \left(\begin{array}{c} ? \\ ? \\ ? \\ 0 \\ ? \end{array}\right) + \left\langle \left(\begin{array}{c} ? \\ 22 \\ ? \\ ? \\ ? \end{array}\right), \left(\begin{array}{c} ? \\ 3 \\ ? \\ ? \\ ? \end{array}\right)\right\rangle$$

$$\begin{array}{ccc}
2) & \begin{pmatrix}
? \\ ? \\ -21 \\ ? \\ ?
\end{pmatrix} + \left\langle \begin{pmatrix}
? \\ 25 \\ ? \\ ? \\ ?
\end{pmatrix}, \begin{pmatrix}
? \\ 4 \\ ? \\ ? \\ ?
\end{pmatrix}
\right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 2 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 29 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -4 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ -8 \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ -9 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -6 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 8 \end{pmatrix} \rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	3K	4K	9K	5K
harinas vegetales	1K	1K	2K	1K
harinas de pescado	1K	3K	9K	5K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 14K 4K 8K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 2 sea igual a 0.
- 1) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ -1 & 1 & -1 & -2 \\ -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

$$1) \quad \begin{pmatrix} ? & -9 & 7 & -6 \\ -3 & ? & 2 & -2 \\ -2 & -2 & ? & -1 \\ 6 & 5 & -4 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ 3 & ? & 4 & 1 \\ 0 & 0 & ? & 0 \\ 2 & 1 & 3 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ 2 & ? & 1 & 1 \\ 1 & 0 & ? & -1 \\ 1 & 1 & 1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & 2 & 0 \\ 1 & ? & -5 & -1 \\ 0 & -1 & ? & 0 \\ -1 & -2 & 4 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 2 & 2 \\ 1 & ? & 2 & 1 \\ 2 & -1 & ? & 1 \\ 4 & -2 & 3 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 4 & 2 \\ -1 & ? & -1 & -2 \\ 1 & -1 & ? & 1 \\ -3 & 2 & -4 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & 0 \\ 0 & ? & 0 & -1 \\ 1 & 0 & ? & 1 \\ 1 & 0 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 0\ -2\ -2\ 0\ 0\)\text{, }(\ 0\ 2\ 1\ 1\ 1\)\text{, }(\ -1\ 0\ -2\ -2\ 2\)\text{, }(\ -1\ 2\ 0\ -1\ -2\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (5 2 0 -8) es combinación lineal de la uplas

$$(\ -2\ 0\ -2\ -2\)\text{, }(\ 1\ 1\ 1\ -1\)\text{, }(\ -1\ 2\ 0\ -1\)\text{, }(\ -3\ 2\ -2\ -3\)\text{, }(\ 0\ 0\ 0\ 2\)\text{,}$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cccc} \mathbf{1} & \mathbf{0} & -2 \\ -\mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1} & \mathbf{0} \end{array}\right)^{-1} \boldsymbol{.} \boldsymbol{X} \boldsymbol{.} \left(\begin{array}{cccc} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & \mathbf{2} \end{array}\right)^{-1} = \left(\begin{array}{cccc} 7 & \mathbf{11} & -6 \\ 6 & 8 & -4 \\ 3 & 5 & -3 \end{array}\right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} -1 & 0 & 1 & -1 \\ 1 & 0 & 0 & 1 \\ a & -1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix} \text{ tenga determinante igual a 0?}$$

Encontrar la solución del sistema

$$\begin{array}{l} x_1-2\;x_3-3\;x_4=1\\ 3\;x_1-4\;x_2+8\;x_3+5\;x_4=-3\\ -x_1+x_2-x_3-5\;x_4=0\\ -x_1-x_2+6\;x_3+2\;x_4=-3 \end{array}$$

tomando como parámetro, si ello fuera necesario, las

últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ 1 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 1 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -7 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 1 \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 0 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 9 \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ 0 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -6 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -2 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 3 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -3 \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 1 \end{pmatrix} + \left\langle \begin{pmatrix} 19 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ -4 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 37 \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	3K	1K	2K
Pienso marca 2	3K	0K	1K
Pienso marca 3	2K	1K	1K
Pienso marca 4	4K	2K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 44K 12K 23K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 16.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 2) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 0 & 3 & 1 & -2 \\ -1 & 5 & 1 & -3 \\ 0 & 1 & 1 & -1 \\ 0 & -2 & -1 & 2 \end{pmatrix} .$$

$$1) \begin{pmatrix} ? & -6 & -2 & -3 \\ 0 & ? & 0 & 1 \\ 0 & 4 & ? & 2 \\ 0 & 3 & 1 & ? \end{pmatrix} \quad 2) \begin{pmatrix} ? & -2 & 0 & 1 \\ 0 & ? & 1 & 0 \\ -1 & -2 & ? & 1 \\ -1 & 3 & 0 & ? \end{pmatrix} \quad 3) \begin{pmatrix} ? & -2 & 2 & -1 \\ -3 & ? & 0 & 0 \\ 0 & 0 & ? & 0 \\ 0 & 0 & ? & 0 \\ -1 & 1 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & -1 & 0 \\ 1 & ? & 0 & 1 \\ 0 & 0 & ? & 1 \\ 1 & 0 & 1 & ? \end{pmatrix} \quad 5) \begin{pmatrix} ? & -1 & 1 & -1 \\ -1 & ? & 3 & -4 \\ -1 & -1 & ? & -1 \\ -1 & -1 & 2 & ? \end{pmatrix} \quad 6) \begin{pmatrix} ? & 0 & -1 & -1 \\ 1 & ? & -3 & -2 \\ 0 & 0 & ? & -1 \\ 0 & 0 & ? \end{pmatrix} \quad 7) \begin{pmatrix} ? & 0 & 0 & 0 \\ -1 & ? & 2 & -1 \\ 1 & 0 & ? & 0 \\ 1 & 1 & -1 & ? \end{pmatrix}$$

Ejercicio 2

```
¿Cuántas de las uplas ( -1 -3 2 2 ), ( -1 -1 2 1 ), ( 1 -1 0 0 ), ( 2 0 -2 -1 ), ( 2 2 -2 -2 ), son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5
```

Ejercicio 3

```
Comprobar si la upla (-2\ 4\ -8) es combinación lineal de la uplas (-1\ 2\ -1), (-1\ 2\ 0), (-2\ 4\ 0), (0\ 0\ 1), (-1\ 2\ 1), (
```

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 4 & 3 \\ 5 & 4 \end{pmatrix} \cdot X - \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 2 & 3 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz $\begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & -2 \\ -2 & 0 & a & 1 \\ 0 & 1 & -2 & -1 \end{pmatrix} \text{ tenga determinante igual a 1?}$ tenga determinante igual a 1?

Encontrar la solución del sistema

$$4 x_1 + 3 x_2 - 3 x_4 == -1$$

$$9 x_1 + 7 x_2 - 5 x_3 - 5 x_4 == 4$$

$$5 x_1 + 4 x_2 - 5 x_3 - 2 x_4 == 5$$

tomando como parámetro, si ello fuera necesario, las

últimas variables y despejando las primeras (es decir al resolver

 $por \ \ Gauss, \ \ comenzaremos \ \ seleccionando \ \ columnas \ \ de \ \ izquierda \ \ a \ \ derecha)$

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ -3 \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 19 \\ ? \\ ? \\ 2 \end{pmatrix}, \begin{pmatrix} 7 \\ ? \\ ? \\ ? \\ 2 \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} -19 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -15 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -7 \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 5 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 1 \end{pmatrix}, \begin{pmatrix} -10 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 8 \\ ? \\ ? \\ ? \\ 6 \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ 4 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -6 \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ 3 \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} -14 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -8 \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	7K	1K	3K	5K
harinas vegetales	5K	1K	2K	3K
harinas de pescado	6K	1K	3K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 28K 20K 26K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=4, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 5) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} 1 & 0 & -1 & 0 \\ -3 & 1 & 1 & -1 \\ 0 & -1 & 3 & 0 \\ -1 & 1 & -1 & 0 \end{pmatrix}.$

$$1) \quad \begin{pmatrix} ? & -4 & 1 & 3 \\ 0 & ? & 2 & 1 \\ 0 & -1 & ? & 1 \\ -1 & -2 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & 0 & 1 & 1 \\ 3 & ? & 2 & 3 \\ 1 & 0 & ? & 1 \\ -2 & -1 & 0 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & 1 & 1 \\ 0 & ? & 1 & 0 \\ 0 & 0 & ? & -1 \\ 1 & 1 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & 1 & 0 \\ 0 & ? & -1 & 0 \\ -1 & 3 & ? & 1 \\ 1 & -1 & 2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 1 & 1 \\ 0 & ? & 2 & 0 \\ 0 & -1 & ? & 0 \\ -1 & 1 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 2 & 1 \\ 3 & ? & 1 & 0 \\ -3 & 2 & ? & -1 \\ -2 & -2 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -2 & -1 \\ 0 & ? & 1 & 0 \\ 0 & -1 & ? & 1 \\ 3 & 2 & -3 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-2\ 2\ -1\ 2\ -2\)$$
, $(-2\ 0\ 0\ -2\ 2\)$, $(-1\ 0\ 1\ 1\ 2\)$, $(-3\ 0\ 1\ -1\ 4\)$, $(-4\ 2\ -1\ 0\ 0\)$, $(-4\ 4\ -2\ 4\ -4\)$,

son independientes?

Ejercicio 3

Comprobar si la upla (6 0 9 6) es combinación lineal de la uplas

$$(-2\ 2\ -1\ 2)$$
, $(0\ 1\ 1\ 2)$, $(-4\ 4\ -2\ 4)$,

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cccc} 4 & 6 & -7 \\ 1 & 2 & -2 \\ -2 & -3 & 4 \end{array}\right).X. \left(\begin{array}{cccc} 1 & -1 & -5 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{cccc} -1 & 4 & 2 \\ 0 & 1 & -1 \\ 1 & -2 & -3 \end{array}\right)$$

$$1) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & * & -1 \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & * & * \\ -1 & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} -1 & -3 & -1 & 2 \\ a & -1 & -2 & 1 \\ -1 & 0 & 1 & 0 \\ 2 & 2 & 0 & -1 \end{pmatrix}$$
 tenga determinante igual a -5?

Encontrar la solución del sistema

$$-2\;x_1\;-\;4\;x_2\;+\;7\;x_3\;+\;x_4\;==\;3$$

$$-2 x_1 + x_2 + x_3 - 7 x_4 == -5$$

$$3 x_1 + 4 x_2 - 8 x_3 + 5 x_4 == -4$$

$$-3 x_1 - 3 x_2 + 7 x_3 == -3$$

tomando como parámetro, si ello fuera necesario, las

- últimas variables y despejando las primeras (es decir al resolver
 - por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
- . Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ -29 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -31 \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -32 \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ 0 \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} -4 \\ ? \\ ? \\ ? \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 4 \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} -28 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -39 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ 3 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 7 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 1 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 4 \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	15K	7K	4K	17K
harinas vegetales	3K	1K	1K	3K
harinas de pescado	8K	3K	2K	8K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 34K 7K 17K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 5.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 2 & 0 & -4 & -3 \\ 0 & 1 & -1 & -1 \\ 3 & -1 & -1 & 0 \\ -3 & 1 & 2 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} ? & -7 & -4 & -4 \end{pmatrix} \qquad \begin{pmatrix} ? & -3 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} ? & -2 & 0 & 1 \\ 0 & 1 & -1 & -1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

$$1) \quad \begin{pmatrix} ? & -7 & -4 & -4 \\ -1 & ? & 3 & 3 \\ 0 & 0 & ? & 0 \\ 0 & 2 & 3 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -3 & 0 & 1 \\ 0 & ? & 1 & 1 \\ 1 & 3 & ? & 0 \\ -1 & -2 & 0 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & -1 & -3 \\ 1 & ? & 0 & 1 \\ 2 & 1 & ? & 3 \\ -4 & -3 & -2 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & 1 & -1 & -2 \\ 0 & ? & 1 & 1 \\ -3 & 2 & ? & -7 \\ 3 & -2 & 6 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ 2 & ? & 1 & 0 \\ 2 & -1 & ? & 1 \\ 3 & -1 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & -1 & 4 \\ 2 & ? & -2 & 5 \\ 1 & 1 & ? & 3 \\ 1 & 0 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & -1 \\ -2 & ? & 1 & -3 \\ -2 & 0 & ? & -2 \\ 0 & -1 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 0\ -2\ -2\ 2\)\text{, }(\ 0\ 2\ 1\ 0\)\text{, }(\ 1\ -2\ -2\ 0\)\text{, }(\ 0\ 2\ -1\ 1\)\text{, }(\ -1\ 4\ 1\ 1\)\text{,}$$

son independientes?

$$1) \ 1 \ \ 2) \ 2 \ \ 3) \ 3 \ \ 4) \ 4 \ \ 5) \ 5$$

Ejercicio 3

Comprobar si la upla (0 -2 -2) es combinación lineal de la uplas

$$(0 -1 -1), (0 -2 -2),$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X-\left(\begin{array}{cc}3&4\\2&3\end{array}\right)\right) \boldsymbol{.} \left(\begin{array}{cc}4&-3\\-1&1\end{array}\right)=\left(\begin{array}{cc}-7&4\\-10&7\end{array}\right)$$

$$1) \quad \left(\begin{array}{ccc} -2 & \star \\ \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{ccc} 1 & \star \\ \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{ccc} 2 & \star \\ \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{ccc} \star & -2 \\ \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccc} \star & -1 \\ \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} 0 & 1 & 0 & -1 \\ -1 & -3 & 1 & 2 \\ 2 & -2 & 1 & 2 \\ a & 2 & 1 & 1 \end{pmatrix} \text{ tenga determinante igual a 7?}$$

1)
$$-4$$
 2) 1 3) 4 4) -1 5) 0

Encontrar la solución del sistema

$$3 x_1 + 4 x_2 - 4 x_3 - 2 x_4 - x_5 == 1$$

 $2 x_1 + 3 x_2 + 5 x_3 - 3 x_4 - 3 x_5 == 5$
 $-x_1 - x_2 + 9 x_3 - x_4 - 2 x_5 == 4$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 0 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -23 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -6 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -2 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -22 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ -8 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -1 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -1 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 6 \end{pmatrix} \right\rangle$$

$$5) \quad \left(\begin{array}{c} ? \\ ? \\ 5 \\ ? \\ ? \\ ? \\ \end{array}\right) + \left\langle \left(\begin{array}{c} ? \\ ? \\ 10 \\ ? \\ ? \\ \end{array}\right) \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	4K	15K	9K
Pienso marca 2	2K	9K	5K
Pienso marca 3	5K	23K	13K
Pienso marca 4	4K	17K	10K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 46K 199K 115K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 2) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 3 & -1 & -5 & -3 \\ 0 & 1 & 2 & 2 \\ -1 & 1 & 4 & 3 \\ 0 & 1 & 3 & 3 \end{array} \right).$$

$$1) \quad \begin{pmatrix} ? & -3 & -1 & 0 \\ 1 & ? & 2 & 0 \\ 0 & 4 & ? & 0 \\ 1 & -3 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -3 & 0 & 1 \\ 1 & ? & 1 & 0 \\ -2 & 1 & ? & 2 \\ -1 & 0 & 1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & 0 & 2 & -1 \\ 0 & ? & 0 & -2 \\ 1 & 0 & ? & -2 \\ -1 & -1 & -3 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & -2 & -1 \\ 0 & ? & -1 & -2 \\ 6 & -2 & ? & 1 \\ -2 & 1 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & -1 & 1 \\ 0 & ? & -1 & -2 \\ 0 & 0 & ? & 1 \\ 1 & 0 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -2 & 2 & -1 \\ 1 & ? & -1 & 0 \\ -3 & -8 & ? & 7 \\ 0 & -1 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 2 & -1 \\ 0 & ? & 3 & -1 \\ 0 & 1 & ? & 1 \\ -1 & 2 & -2 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 0\ -2\ -1\ 2\)\text{, } (\ 1\ 0\ -1\ -2\)\text{, } (\ -2\ 2\ 0\ 0\)\text{, } (\ -4\ 1\ 0\ -1\)\text{, } (\ 2\ 1\ 0\ 1\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (7 9 9) es combinación lineal de la uplas

$$(-2 -4 4)$$
, $(-1 -2 2)$, $(0 0 1)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} -1 & 2 \\ -1 & 1 \end{array}\right)^{-1} \boldsymbol{.} X - \left(\begin{array}{cc} -1 & -2 \\ 1 & 1 \end{array}\right) = \left(\begin{array}{cc} 2 & 0 \\ 0 & -2 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cc} -1 & \star \\ \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cc} 0 & \star \\ \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cc} 1 & \star \\ \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cc} \star & 1 \\ \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{cc} \star & 2 \\ \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} -1 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ -2 & a & -1 & 1 \end{pmatrix} \text{ tenga determinante igual a 8?}$$

Encontrar la solución del sistema

$$-3 x_2 - x_3 + 2 x_4 == -1$$

 $-2 x_1 + 5 x_2 - x_3 + x_4 == -5$

$$-2\;x_1\;-\;4\;x_2\;-\;4\;x_3\;+\;7\;x_4\;==\;-\;8$$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ 4 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} 1 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -1 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 6 \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} 0 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -2 \end{pmatrix} \right\rangle, \begin{pmatrix} ? \\ ? \\ 13 \\ ? \end{pmatrix}$$

5)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 3 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 1 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 16 \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	5K	5K	12K	2K
harinas vegetales	2K	4K	8K	3K
harinas de pescado	2K	2K	5K	1K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 80K 55K 33K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 15.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 2) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=5, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 5) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} -1 & 2 & 1 & 1 \\ -2 & 3 & -2 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & -2 & -2 & -1 \end{pmatrix}.$$

$$1) \quad \left(\begin{array}{ccccc} ? & -7 & 2 & -4 \\ -2 & ? & 1 & -2 \\ 1 & 1 & ? & 1 \\ 2 & 3 & -1 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{cccccc} ? & -2 & -1 & 5 \\ 4 & ? & -1 & 2 \\ -1 & 0 & ? & -1 \\ 2 & 0 & 1 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{cccccccc} ? & -3 & 8 & -3 \\ -1 & ? & 3 & -2 \\ -1 & -3 & ? & -1 \\ 0 & -1 & 2 & ? \end{array}\right) \quad 4)$$

$$\begin{pmatrix} ? & -2 & -1 & 0 \\ -1 & ? & 1 & -1 \\ 0 & 1 & ? & -1 \\ -1 & 1 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & 0 & 0 \\ -1 & ? & 0 & 0 \\ 1 & 0 & ? & 1 \\ -1 & 1 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ 2 & ? & -1 & -1 \\ -1 & 1 & ? & 0 \\ -1 & 3 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & -1 & 0 \\ 0 & ? & -1 & 1 \\ -1 & 2 & ? & 3 \\ 0 & 0 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(0\ 0\ 0\ -2\ 1)$$
, $(0\ 2\ -2\ 0\ -2)$, $(2\ 0\ 0\ 0\ -2)$, $(0\ -2\ 2\ -2\ 3)$, $(-2\ 2\ -2\ 0\ 0)$, son independientes?

Ejercicio 3

Comprobar si la upla ($2\ 1\ -9\ 2$) es combinación lineal de la uplas

$$(-1\ 2\ 2\ 2)$$
, $(-3\ 4\ 0\ 0)$, $(2\ -2\ 2\ 2)$, $(1\ 0\ 4\ 4)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 0 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{array}\right).X + \left(\begin{array}{ccc} -1 & -1 & -2 \\ 0 & 1 & 0 \\ 0 & -2 & -1 \end{array}\right) = \left(\begin{array}{ccc} 0 & -4 & -4 \\ 0 & 0 & -1 \\ -1 & -1 & -1 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} \star & 1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & \star & \emptyset \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & \star & \star \\ \emptyset & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} 1 & 2 & 2 & 1 \\ -2 & -2 & -3 & -1 \\ a & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \text{ tenga determinante igual a 2?}$$

Encontrar la solución del sistema

$$-7\;x_1\,+\,3\;x_2\,-\,6\;x_3\,-\,4\;x_4\,-\,9\;x_5\,+\,6\;x_6\,==\,4$$

$$-2 x_1 + x_2 - 2 x_3 - 4 x_4 + 2 x_5 + 2 x_6 == 3$$

$$3 x_1 + x_2 + x_3 - 5 x_4 - 4 x_5 + 2 x_6 == -5$$

$$2 x_1 + x_3 - 3 x_4 + 3 x_5 == -1$$

tomando como parámetro, si ello fuera necesario, las

últimas variables y despejando las primeras (es decir al resolver

por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$4) \quad \begin{pmatrix} ? \\ ? \\ -14 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 11 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -17 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 3 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -8 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 2 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	9K	10K	16K	15K
harinas vegetales	2K	3K	4K	5K
harinas de pescado	6K	7K	11K	11K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 25K 8K 18K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 2.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 2) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 0 & -2 & 0 & 1 \\ 5 & 10 & 5 & -9 \\ -2 & -4 & -1 & 3 \\ -3 & -5 & -3 & 5 \end{pmatrix} .$$

$$1) \begin{pmatrix} ? & -3 & 4 & 3 \\ 0 & ? & 4 & 3 \\ -3 & -2 & ? & -1 \\ 1 & 1 & -1 & ? \end{pmatrix} \quad 2) \begin{pmatrix} ? & -2 & 0 & -1 \\ 0 & ? & 0 & 1 \\ 0 & -4 & ? & -1 \\ 1 & 2 & 1 & ? \end{pmatrix} \quad 3) \begin{pmatrix} ? & 1 & -1 & 2 \\ 2 & ? & 0 & 5 \\ 3 & 4 & ? & 6 \\ 5 & 6 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & 3 & 0 \\ 0 & ? & 0 & 0 \\ 0 & 1 & ? & 0 \\ 0 & 1 & ? & 0 \\ -2 & 1 & -2 & ? \end{pmatrix} \quad 5) \begin{pmatrix} ? & -1 & -2 & 0 \\ 1 & ? & 1 & 0 \\ 2 & 3 & ? & -1 \\ 3 & 3 & 6 & ? \end{pmatrix} \quad 6) \begin{pmatrix} ? & -1 & -2 & 1 \\ 1 & ? & -1 & 1 \\ 3 & -3 & ? & 0 \\ 2 & -1 & -1 & ? \end{pmatrix} \quad 7) \begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & 0 & -1 \\ 1 & 0 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

(-3 -1 2 2), (-1 -2 2 2), (1 0 0 2), (-2 1 0 0), (2 2 2 0),

son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5

Ejercicio 3

Comprobar si la upla (1 3 -8) es combinación lineal de la uplas (0 -1 -2), (2 1 0), (2 2 2), (0 -2 -4), 1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

Ejercicio 5

$$\begin{pmatrix} 2 & -1 & \emptyset & 1 \\ 1 & \emptyset & 1 & -1 \\ 0 & 2 & \emptyset & -1 \\ a & -1 & -2 & 1 \end{pmatrix} \text{ tenga determinante igual a 10?}$$

Encontrar la solución del sistema

$$-8 x_1 + 13 x_2 + x_3 + 5 x_4 = 5$$

 $11 x_1 - 18 x_2 - 4 x_4 = 2$

$$-3 x_1 + 5 x_2 - x_3 - x_4 = -7$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ ? \\ 8 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 6 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 0 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -2 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

2)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 11 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 23 \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ -74 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 15 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 24 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 6 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 8 \\ ? \end{pmatrix} \rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -1 \end{pmatrix} + \langle \begin{pmatrix} 21 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 24 \\ ? \\ ? \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	3K	0K	2K
Pienso marca 2	3K	2K	2K
Pienso marca 3	7K	5K	5K
Pienso marca 4	8K	5K	6K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 90K 58K 65K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 15.
- 1) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4
- 5) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 2 & 2 & -1 & -1 \\ 1 & 2 & -1 & 0 \\ -2 & -3 & 2 & 0 \\ -2 & -3 & 2 & 1 \end{pmatrix}$$

$$1) \begin{pmatrix} ? & -3 & -2 & -3 \\ 0 & ? & 0 & -2 \\ -1 & 1 & ? & 1 \\ -1 & 0 & 1 & ? \end{pmatrix} \quad 2) \begin{pmatrix} ? & -2 & -3 & -1 \\ 0 & ? & 0 & -1 \\ 0 & 0 & ? & -1 \\ 0 & 1 & 1 & ? \end{pmatrix} \quad 3) \begin{pmatrix} ? & -1 & -1 & 1 \\ 0 & ? & 1 & 0 \\ 1 & 2 & ? & 1 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & 1 & 1 \\ -1 & ? & 1 & 0 \\ 1 & 1 & ? & 0 \\ -1 & -2 & 0 & ? \end{pmatrix} \quad 5) \begin{pmatrix} ? & -1 & 1 & 2 \\ 2 & ? & 0 & 0 \\ 4 & 2 & ? & -2 \\ -5 & -3 & 2 & ? \end{pmatrix} \quad 6) \begin{pmatrix} ? & -1 & 2 & 0 \\ 0 & ? & 1 & 0 \\ 0 & 0 & ? & 0 \\ 0 & -1 & 1 & ? \end{pmatrix} \quad 7) \begin{pmatrix} ? & 1 & -4 & 2 \\ 4 & ? & -3 & 0 \\ 5 & 1 & ? & 1 \\ 0 & 1 & -2 & ? \end{pmatrix}$$

Ejercicio 2

```
¿Cuántas de las uplas

(0 1 2 -2 1), (1 -2 -1 1 1), (0 1 1 2 2)

, (-2 0 2 1 1), (-2 1 3 3 3), (-3 2 3 0 0),

son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5 6) 6
```

Ejercicio 3

Comprobar si la upla $(6\ 0\ 7\ -3)$ es combinación lineal de la uplas $(2\ -1\ 0\ 0)$, $(1\ -1\ 0\ -1)$, $(1\ 0\ 1\ 0)$, $(-1\ -2\ 2\ -2)$, 1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X - \begin{pmatrix} 0 & 2 & 1 \\ -1 & 2 & 1 \\ 0 & -1 & 0 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -3 & -1 & 1 \\ 2 & -3 & -2 \\ 1 & 2 & 0 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & -1 \\ * & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} -2 & -3 & 5 & -3 \\ 0 & 1 & 0 & 0 \\ -1 & 2 & -3 & 2 \\ a & 1 & 1 & 2 \end{pmatrix} \text{ tenga determinante igual a 31?}$$

Encontrar la solución del sistema

$$2 x_1 + x_3 = -2$$

 $5 x_1 - x_2 + 4 x_3 = 2$
 $-x_2 + x_3 = -2$

tomando como parámetro, si ello fuera necesario, las
últimas variables y despejando las primeras (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
. Expresar la solución mediante combinaciones lineales.

- 1) (?)
- 2) $\begin{pmatrix} ? \\ 4 \\ ? \end{pmatrix} + \langle \begin{pmatrix} -5 \\ ? \\ ? \end{pmatrix} \rangle$
- 3) (-10 ?
- 4) (? ?
- $5) \quad \left(\begin{array}{c} \textbf{10} \\ \textbf{?} \\ \textbf{?} \\ \end{array}\right) + \left\langle \left(\begin{array}{c} \textbf{?} \\ -\textbf{10} \\ \textbf{?} \\ \end{array}\right), \left(\begin{array}{c} -\textbf{1} \\ \textbf{?} \\ \textbf{?} \\ \end{array}\right) \right\rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	1K	8K	11K
Pienso marca 2	2K	40K	55K
Pienso marca 3	4K	53K	73K
Pienso marca 4	2K	29K	40K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 24K 505K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 12.

- 1) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ -1 & 1 & 2 & 1 \\ 2 & -1 & -3 & -2 \\ -1 & 0 & 2 & 1 \end{pmatrix}.$$

$$1) \quad \left(\begin{array}{ccccc} ? & 1 & 1 & 1 \\ 0 & ? & 0 & -1 \\ 0 & 1 & ? & 1 \\ 1 & -1 & -1 & ? \end{array} \right) \quad 2) \quad \left(\begin{array}{ccccccc} ? & -2 & 0 & 0 \\ -2 & ? & 1 & -1 \\ 2 & 0 & ? & 1 \\ -2 & 4 & 1 & ? \end{array} \right) \quad 3) \quad \left(\begin{array}{cccccccc} ? & -1 & -1 & 1 \\ 4 & ? & 3 & -2 \\ -7 & -2 & ? & 3 \\ -3 & -1 & -1 & ? \end{array} \right) \quad 4)$$

$$\begin{pmatrix} ? & -1 & 0 & 0 \\ -1 & ? & 0 & 0 \\ 2 & 0 & ? & -1 \\ -1 & -1 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & -1 & 0 \\ -3 & 0 & ? & 1 \\ 0 & 2 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 3 & ? & 0 & 0 \\ 3 & 0 & ? & 3 \\ 2 & 0 & 3 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ 1 & ? & 0 & -2 \\ 0 & -2 & ? & -1 \\ 1 & 2 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-1\ 2\ 1\ 2\ -1\)$$
, $(2\ -2\ 1\ 0\ -2\)$, $(-2\ -2\ 1\ -1\ -1\)$, $(2\ 2\ 0\ 2\ 0\)$, $(-4\ -4\ 1\ -3\ -1\)$, son independientes?

Ejercicio 3

Comprobar si la upla ($8\ 6\ -3\ -8$) es combinación lineal de la uplas

$$(-2\ 1\ 2\ -2)$$
, $(-2\ -2\ 2\ -1)$, $(-2\ 1\ 0\ 1)$, $(0\ 1\ -1\ 0)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 3 & 0 & 4 \\ 5 & 0 & 7 \\ 2 & -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} X - \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} -8 & 0 & -8 \\ -14 & 0 & -14 \\ -7 & -1 & -7 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} 0 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} \star & 0 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} \star & 2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & \star & \star \\ -2 & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & \star & \star \\ 1 & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} -2 & -3 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 4 & 0 & -1 \\ a & -2 & 1 & 1 \end{pmatrix} \text{ tenga determinante igual a } -3?$$

Encontrar la solución del sistema

$$5 x_1 + x_2 + x_4 == -5$$

$$2 x_1 + x_2 + x_3 + x_4 == 2$$

$$-4 x_1 - 2 x_2 + x_3 - x_4 == -4$$

$$-3 x_1 - 2 x_3 - x_4 == 7$$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} -2 \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 1 \\ ? \end{pmatrix} \rangle$$

$$3) \quad \begin{pmatrix} ? \\ 14 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -10 \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ 16 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 3 \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ 8 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ -4 \end{pmatrix}, \begin{pmatrix} ? \\ -10 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -10 \\ ? \\ ? \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	2K	3K	0K	2K
harinas vegetales	1K	3K	1K	2K
harinas de pescado	1K	4K	0K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 20K 24K 28K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 12.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1

Ejercicio 1

Ejercicio 2

```
¿Cuántas de las uplas
(2 0 -1 0), (-1 0 0 0), (-1 0 -2 2),
son independientes?
1) 1 2) 2 3) 3
```

Ejercicio 3

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} \\ -\mathbf{1} & \mathbf{1} \end{pmatrix} \cdot \mathbf{X} \cdot \begin{pmatrix} \mathbf{3} & \mathbf{1} \\ \mathbf{2} & \mathbf{1} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \mathbf{2} \end{pmatrix}$$

$$\mathbf{1} \quad \begin{pmatrix} -\mathbf{1} & \star \\ \star & \star \end{pmatrix} \qquad \mathbf{2} \quad \begin{pmatrix} \mathbf{1} & \star \\ \star & \star \end{pmatrix} \qquad \mathbf{3} \quad \begin{pmatrix} \mathbf{2} & \star \\ \star & \star \end{pmatrix} \qquad \mathbf{4} \quad \begin{pmatrix} \star & -\mathbf{1} \\ \star & \star \end{pmatrix} \qquad \mathbf{5} \quad \begin{pmatrix} \star & \mathbf{0} \\ \star & \star \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz $\begin{pmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & -2 \\ -1 & 0 & -2 & 0 \\ -1 & 1 & 1 & a \end{pmatrix} \text{ tenga determinante igual a -14?}$ 1) 2 2) 5 3) -3 4) -4 5) -5

Encontrar la solución del sistema

$$\begin{array}{l} 6\;x_1\,+\,5\;x_2\,-\,5\;x_3\,-\,2\;x_4==\,-8\\ -4\;x_1\,-\,5\;x_2\,+\,3\;x_3\,+\,x_4==\,4\\ -2\;x_1\,+\,2\;x_3\,+\,x_4==\,4 \end{array}$$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 6 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -4 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 3 \\ ? \end{pmatrix} \right\rangle$$

- 2) (5)
- 3) (?)
- 4) $\begin{pmatrix} 2 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -13 \end{pmatrix} \right\rangle$
- 5) $\begin{pmatrix} ? \\ ? \\ 0 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -10 \end{pmatrix} \right\rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	2K	4K	3K	1K
harinas vegetales	6K	11K	8K	3K
harinas de pescado	1K	3K	2K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 18K 52K 16K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 2) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 2 & 1 & 0 & -1 \\ 3 & 1 & 0 & -1 \\ 2 & 1 & 1 & -2 \\ 5 & 0 & 2 & -3 \end{array}\right)$$

$$1) \quad \left(\begin{array}{ccccc} ? & -6 & 0 & -4 \\ -6 & ? & 2 & 6 \\ -7 & 8 & ? & 6 \\ -1 & 1 & 0 & ? \end{array} \right) \quad 2) \quad \left(\begin{array}{ccccccc} ? & -4 & 7 & -4 \\ 2 & ? & 1 & -2 \\ 3 & -2 & ? & -2 \\ 0 & 0 & 0 & ? \end{array} \right) \quad 3) \quad \left(\begin{array}{ccccccccccc} ? & -2 & 1 & 3 \\ -1 & ? & 0 & -3 \\ 2 & -3 & ? & 4 \\ 2 & -2 & 1 & ? \end{array} \right) \quad 4)$$

$$\begin{pmatrix} ? & 1 & 0 & 0 \\ -4 & ? & 2 & -1 \\ -8 & 5 & ? & -1 \\ -7 & 5 & 2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & 1 \\ 0 & ? & -1 & -1 \\ 0 & -1 & ? & 0 \\ 1 & -1 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & -3 \\ -2 & ? & -2 & 3 \\ 2 & -1 & ? & -2 \\ -3 & 2 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 2 \\ 1 & ? & 1 & 0 \\ -3 & 2 & ? & 0 \\ -1 & 2 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 2\ -2\ 0\ 0\ -1\)\text{, } (\ -2\ -2\ 0\ 1\ 1\)\text{, } (\ -1\ 1\ 1\ -2\ -1\)\text{, } (\ -1\ 2\ 1\ -2\ 1\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (-3 -5 3 -7) es combinación lineal de la uplas

$$(1 \ -1 \ 1 \ -1)$$
, $(0 \ -1 \ 2 \ 0)$, $(-2 \ -1 \ 2 \ 0)$, $(-3 \ 0 \ 1 \ 1)$, $(-4 \ -2 \ 4 \ 0)$, $(-2 \ -2 \ 4 \ 0)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right)^{-1} \cdot X \cdot \left(\begin{array}{ccc} 2 & 0 & -1 \\ 4 & 1 & -2 \\ 1 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 6 & 1 & -3 \\ -1 & 0 & 0 \\ -1 & 0 & 1 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} \star & 1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & 2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & \star & -2 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} -2 & 0 & -1 & -3 \\ -1 & 1 & -1 & -2 \\ 1 & a & 2 & 0 \\ 1 & -1 & 1 & 1 \end{pmatrix} \text{ tenga determinante igual a 0?}$$

1)
$$0$$
 2) 5 3) -1 4) -3 5) -2

Encontrar la solución del sistema

$$-10 x_1 + 5 x_2 == 10$$

$$4 x_1 + 3 x_2 - 2 x_3 - x_4 == 1$$

$$2 x_1 + 5 x_2 - 3 x_3 - x_4 == 1$$

$$x_2 - x_3 == -2$$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -6 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 1 \\ ? \end{pmatrix} \rangle$$

$$3) \quad \begin{pmatrix} ? \\ ? \\ -4 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 1 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 9 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ 3 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 4 \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ 2 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 2 \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	1K	1K	0K
Pienso marca 2	4K	4K	1K
Pienso marca 3	5K	4K	2K
Pienso marca 4	4K	2K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 41K 29K 21K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 10.
- 1) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 4) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 2 & -1 & 0 \\ -1 & -2 & 1 & 1 \\ -1 & -1 & 0 & 2 \end{pmatrix}$$

$$1) \begin{pmatrix} ? & -4 & 1 & -3 \\ 0 & ? & 0 & 1 \\ 3 & -3 & ? & -2 \\ 0 & 1 & 0 & ? \end{pmatrix} \quad 2) \begin{pmatrix} ? & -3 & 4 & 2 \\ -1 & ? & 0 & -1 \\ 1 & -3 & ? & 2 \\ 0 & 0 & 1 & ? \end{pmatrix} \quad 3) \begin{pmatrix} ? & -1 & -1 & 1 \\ 1 & ? & 1 & 0 \\ 2 & 1 & ? & 0 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & -1 & 0 \\ 0 & ? & 0 & 2 \\ 0 & 1 & ? & 1 \\ 0 & 0 & 1 & ? \end{pmatrix} \quad 5) \begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & -2 & -1 \\ -1 & -4 & ? & 1 \\ 0 & 0 & 1 & ? \end{pmatrix} \quad 6) \begin{pmatrix} ? & 0 & -1 & 0 \\ 2 & ? & 0 & 1 \\ -2 & 0 & ? & -1 \\ 2 & -1 & 0 & ? \end{pmatrix} \quad 7) \begin{pmatrix} ? & 0 & 0 & 0 \\ -3 & ? & 1 & -1 \\ 2 & -1 & ? & 1 \\ 1 & 0 & -1 & ? \end{pmatrix}$$

Ejercicio 2

```
¿Cuántas de las uplas

( -2 1 -1 -2 ), (0 -1 -2 -2 ), (-2 2 0 2 ), (-2 1 1 -2 ), son independientes?

1) 1 2) 2 3) 3 4) 4
```

Ejercicio 3

Comprobar si la upla $(-6\ 6\ -6)$ es combinación lineal de la uplas $(2\ -2\ 1)$, $(-2\ 2\ 0)$, (

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X + \begin{pmatrix} -1 & -3 \\ 1 & 2 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -2 & 2 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} -2 & -1 & -1 & 3 \\ -2 & -1 & a & 1 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 2 & 2 \end{pmatrix} \text{ tenga determinante igual a } -4?$$

Encontrar la solución del sistema

$$-x_1 - 3 x_2 - x_3 + 5 x_4 == -5$$

 $x_1 + 2 x_2 + x_3 + 4 x_4 == -5$

tomando como parámetro, si ello fuera necesario, las
últimas variables y despejando las primeras (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ ? \\ 4 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -4 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 4 \end{pmatrix}, \begin{pmatrix} -6 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 7 \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ -7 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 10 \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} -24 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 0 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 7 \\ ? \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} -27 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -1 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -20 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} -25 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 0 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -22 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	6K	6K	1K
Pienso marca 2	5K	8K	4K
Pienso marca 3	4K	7K	4K
Pienso marca 4	5K	7K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 90K 124K 52K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 1 sea igual a 5.
- 1) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=5

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 1 & -2 & 1 \\ -1 & 0 & 2 & -2 \\ 0 & -1 & 1 & 0 \\ -2 & 1 & 0 & 0 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} ? & -5 & 8 & -5 \\ -9 & ? & -13 & 8 \\ 1 & -1 & ? & -1 \\ -3 & 1 & -2 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -4 & -5 & 3 \\ -3 & ? & -2 & 1 \\ 3 & 3 & ? & -1 \\ 2 & 1 & 2 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -4 & 0 & 4 \\ 0 & ? & 0 & -2 \\ -1 & -2 & ? & 1 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & 1 & 2 & \emptyset \\ 4 & ? & 4 & 1 \\ 4 & 2 & ? & 1 \\ 3 & 1 & 4 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & -2 & -2 \\ -2 & ? & \emptyset & 9 \\ \emptyset & \emptyset & ? & -1 \\ 1 & -2 & \emptyset & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -2 & 3 & 1 \\ \emptyset & ? & -2 & -1 \\ -1 & 3 & ? & 1 \\ \emptyset & \emptyset & \emptyset & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & -2 & 2 \\ 8 & ? & -3 & 7 \\ 5 & \emptyset & ? & 4 \\ -2 & \emptyset & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -2\ 1\ 2\ -2\ -2\)\hbox{, }(\ 2\ -1\ 2\ 1\ 1\)\hbox{, }(\ 2\ -2\ 2\ 0\ 0\)\hbox{, }(\ 2\ 2\ 0\ -1\ 1\)\hbox{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla $(\ -2\ 2\ 7\ 8\)$ es combinación lineal de la uplas

$$(2 -1 -2 -2)$$
, $(4 -2 -4 -4)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X - \left(\begin{array}{ccc} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)\right). \left(\begin{array}{ccc} 2 & 1 & -4 \\ -3 & 0 & 4 \\ -3 & -2 & 7 \end{array}\right)^{-1} = \left(\begin{array}{ccc} -11 & -2 & -5 \\ -25 & -4 & -12 \\ -31 & -5 & -15 \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 1 & 1 & -2 & -2 \\ 0 & 2 & 1 & a \\ 2 & 1 & 0 & -2 \\ -1 & 0 & -1 & -2 \end{pmatrix} \text{ tenga determinante igual a } -25?$$

Encontrar la solución del sistema

$$-12 x_1 + 13 x_2 + 19 x_3 - 2 x_4 + 5 x_5 = -1$$

7 $x_1 - 10 x_2 - 10 x_3 + 2 x_4 = -1$

$$-4 x_1 + 5 x_2 + 6 x_3 - 4 x_4 + 5 x_5 == 2$$

$$23 x_1 - 26 x_2 - 36 x_3 - 2 x_4 == 5$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ -2 \end{pmatrix} + \left\langle \begin{pmatrix} -188 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 248 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ -57 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -189 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 117 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} 6 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -10 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ -2 \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -2 \\ 2 \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 0 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -40 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 120 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} -1 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -1 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -1 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -10 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	2K	3K	4K
Pienso marca 2	1K	2K	2K
Pienso marca 3	2K	1K	4K
Pienso marca 4	4K	7K	9K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 11K 19K 22K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=5, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{ccccc} 3 & 1 & 0 & -3 \\ 4 & 2 & 0 & -5 \\ -5 & -2 & 1 & 6 \\ -2 & -1 & 0 & 3 \end{array} \right).$$

$$1) \quad \left(\begin{array}{ccccc} ? & -4 & -2 & 0 \\ -1 & ? & 2 & -1 \\ 2 & -2 & ? & 0 \\ 2 & -6 & -3 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{cccccc} ? & -3 & 0 & -1 \\ -3 & ? & 0 & 0 \\ -1 & 2 & ? & 1 \\ 0 & 0 & 0 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{ccccccc} ? & -3 & 2 & 4 \\ 1 & ? & 0 & 0 \\ -1 & 0 & ? & 1 \\ -4 & -4 & 1 & ? \end{array}\right) \quad 4)$$

Ejercicio 2

¿Cuántas de las uplas

(1 2
$$^-$$
1 $^-$ 2), ($^-$ 2 $^-$ 1 1 $^-$ 1), ($^-$ 1 0 $^-$ 1 $^-$ 1), (0 $^-$ 1 2 1),

son independientes?

Ejercicio 3

Comprobar si la upla (-9 -1 -3) es combinación lineal de la uplas

$$(-2\ 1\ 2)$$
, $(-2\ -1\ 1)$, $(0\ -2\ -1)$, $(1\ -1\ 2)$, $(-4\ 2\ 4)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{1} & -3 \\ \mathbf{0} & \mathbf{1} \end{array}\right) . X - \left(\begin{array}{cc} \mathbf{1} & -2 \\ \mathbf{0} & \mathbf{1} \end{array}\right) = \left(\begin{array}{cc} \mathbf{1} & \mathbf{5} \\ -\mathbf{1} & -2 \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} -1 & -1 & 2 & 1 \\ -2 & 1 & -1 & 0 \\ -1 & 0 & 1 & 0 \\ a & 1 & -2 & 0 \end{pmatrix} \text{ tenga determinante igual a 2?}$$

Encontrar la solución del sistema

$$\begin{array}{c} -3\;x_1\,+\,5\;x_2\,+\,7\;x_3\,+\,5\;x_4\,-\,6\;x_5\,=\,3\\ 5\;x_1\,-\,8\;x_2\,-\,2\;x_3\,+\,3\;x_5\,=\,-4\\ 2\;x_1\,-\,3\;x_2\,+\,5\;x_3\,+\,5\;x_4\,-\,3\;x_5\,=\,-1 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -44 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -26 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 24 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ 2 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} -43 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -43 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 30 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

$$4) \quad \begin{pmatrix} ? \\ 3 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ -29 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -25 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	2K	3K	5K	4K
harinas vegetales	0K	1K	0K	1K
harinas de pescado	3K	7K	6K	9K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 19K 1K 30K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 7.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 3) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ -1 & -3 & 3 & 1 \end{pmatrix}$$

$$1) \quad \left(\begin{array}{ccccc} ? & -4 & 0 & -2 \\ 4 & ? & -1 & 0 \\ -3 & -2 & ? & 0 \\ 2 & 2 & 0 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{cccccc} ? & 0 & 1 & 1 \\ 3 & ? & 1 & 1 \\ 2 & 1 & ? & 1 \\ 5 & 3 & 1 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{cccccc} ? & -3 & 0 & -2 \\ 1 & ? & -2 & 4 \\ -1 & -1 & ? & 0 \\ -1 & 4 & 0 & ? \end{array}\right) \quad 4)$$

$$\begin{pmatrix} ? & -2 & -1 & -2 \\ -3 & ? & 1 & 5 \\ -3 & 2 & ? & 2 \\ 0 & 1 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & -1 & 1 \\ 0 & ? & 0 & 0 \\ 2 & -2 & ? & 1 \\ 6 & -3 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -2 & 0 & 1 \\ 1 & ? & 0 & -1 \\ -2 & 1 & ? & -1 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 2 & ? & 3 & -2 \\ 2 & 0 & ? & -3 \\ 1 & 0 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(0\ 2\ -1\ 1\ -1)$$
, $(1\ -2\ -1\ 0\ 0)$, $(2\ -1\ 2\ -2\ 1)$, $(-3\ -1\ 2\ -3\ -2)$, $(-1\ 0\ 2\ -2\ -2)$, $(-2\ -1\ 0\ -1\ 0)$,

son independientes?

Ejercicio 3

Comprobar si la upla (3 2 -8 -1) es combinación lineal de la uplas

$$(\ 1 \ 0 \ 2 \ 0 \) \text{, } (\ -2 \ 0 \ 2 \ -2 \) \text{, } (\ -1 \ 0 \ 1 \ -1 \) \text{, } (\ 2 \ -2 \ 0 \ 1 \) \text{, } (\ 2 \ -1 \ 0 \ 1 \) \text{, } (\ -3 \ 1 \ 1 \ -2 \) \text{, }$$

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} -1 & -1 & 2 \\ 2 & 1 & -3 \\ 0 & 0 & 1 \end{array}\right) \boldsymbol{.} X - \left(\begin{array}{ccc} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & -2 & 4 \\ -4 & 2 & -2 \\ 1 & -1 & 0 \end{array}\right)$$

$$1) \quad \begin{pmatrix} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & -1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} 0 & -4 & 1 & -1 \\ -1 & 2 & -2 & 1 \\ 1 & 1 & a & 2 \\ 1 & 5 & 2 & 1 \end{pmatrix} \text{ tenga determinante igual a 20?}$$

Encontrar la solución del sistema

$$x_1 - 2 x_2 + x_3 = 1$$

 $3 x_1 - 7 x_2 + 6 x_3 = 6$
 $x_1 - x_2 = 0$
 $-x_2 + 2 x_3 = 2$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \left(\begin{array}{c} ? \\ ? \\ 7 \end{array}\right) + \left\langle \left(\begin{array}{c} ? \\ ? \\ 1 \end{array}\right) \right\rangle$$

$$2) \quad \begin{pmatrix} -1 \\ ? \\ ? \end{pmatrix}$$

$$4) \quad \begin{pmatrix} ? \\ 6 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ -1 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -10 \\ ? \end{pmatrix}, \begin{pmatrix} 6 \\ ? \\ ? \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	6K	11K	7K	4K
harinas vegetales	5K	11K	7K	8K
harinas de pescado	1K	3K	2K	4K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 85K 99K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 13.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 3) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=4, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 2 & 0 & -1 & -1 \\ 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ -2 & 0 & 2 & 3 \end{pmatrix}.$$

$$1) \quad \left(\begin{array}{ccccc} ? & -4 & -1 & -1 \\ 7 & ? & 1 & 0 \\ 6 & 3 & ? & 0 \\ -5 & -2 & -1 & ? \end{array} \right) \quad 2) \quad \left(\begin{array}{cccccc} ? & -1 & -2 & -3 \\ -1 & ? & 2 & 2 \\ 2 & -4 & ? & -5 \\ 1 & 3 & 3 & ? \end{array} \right) \quad 3) \quad \left(\begin{array}{cccccccc} ? & 0 & 1 & 0 \\ -1 & ? & -2 & 0 \\ 1 & 0 & ? & -1 \\ 0 & 0 & -2 & ? \end{array} \right) \quad 4)$$

$$\begin{pmatrix} ? & -1 & 0 & 0 \\ -1 & ? & 0 & 0 \\ 1 & 0 & ? & 0 \\ -5 & 3 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 1 & 2 \\ -1 & ? & -1 & 0 \\ 1 & 1 & ? & 0 \\ 0 & 3 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 1 & 3 \\ 0 & ? & 0 & 1 \\ 0 & 0 & ? & -3 \\ 0 & -1 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -1 & 1 \\ 2 & ? & 1 & -1 \\ -2 & -1 & ? & 2 \\ 1 & 0 & 3 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -2 \ -1 \ -2 \ -1 \ -1 \) \text{, } (\ -2 \ 0 \ 2 \ -1 \ 0 \) \text{, } (\ 2 \ 1 \ -2 \ -2 \ 2 \) \text{, } (\ 1 \ 2 \ 2 \ -1 \ 1 \) \text{, }$$

son independientes?

Ejercicio 3

Comprobar si la upla (0 0 0 0) es combinación lineal de la uplas

$$(0\ 1\ -2\ -1)$$
, $(-2\ -1\ -4\ -1)$, $(2\ 2\ 2\ 0)$, $(0\ 2\ -4\ -2)$, $(2\ 1\ 4\ 1)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} . X. \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 3 & -1 & 3 \end{pmatrix} = \begin{pmatrix} -8 & 1 & -5 \\ -2 & 0 & -1 \\ -2 & 0 & -1 \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} -1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & a \\ 2 & -1 & 0 & -1 \end{pmatrix} \text{ tenga determinante igual a 6? }$$

1) 3 2) 5 3)
$$-3$$
 4) -2 5) -1

Encontrar la solución del sistema

$$\begin{array}{l} -x_1 + 2 \; x_2 - x_3 + 3 \; x_4 + 5 \; x_6 = 1 \\ x_1 - x_2 + 3 \; x_3 - 6 \; x_4 + 2 \; x_5 + 7 \; x_6 = 4 \\ -2 \; x_1 + 3 \; x_2 - 3 \; x_3 + 4 \; x_4 - 2 \; x_5 + x_6 = -4 \\ -2 \; x_1 + 3 \; x_2 - 2 \; x_3 - x_4 - 2 \; x_5 + 4 \; x_6 = -5 \end{array}$$

tomando como parámetro, si ello fuera necesario, las

últimas variables y despejando las primeras (es decir al resolver

por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

3)
$$\begin{pmatrix} 16 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -6 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -1 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

$$5) \quad \begin{pmatrix} ? \\ 10 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ 6 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 3 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	2K	5K	0K
Pienso marca 2	6K	9K	4K
Pienso marca 3	10K	15K	7K
Pienso marca 4	17K	25K	12K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 76K 119K 49K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 9.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 4) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} 0 & 0 & 1 & -1 \\ -1 & 1 & 2 & -3 \\ -1 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

$$1) \quad \begin{pmatrix} ? & -2 & -4 & 1 \\ -3 & ? & 4 & -1 \\ -5 & 5 & ? & -2 \\ 2 & -1 & -2 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -1 & -4 & 2 \\ 0 & ? & 0 & -1 \\ -1 & 0 & ? & 0 \\ 3 & -1 & -4 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & 0 & -1 & 0 \\ 1 & ? & -1 & 1 \\ 1 & 0 & ? & 1 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & -2 & 3 \\ 14 & ? & -5 & 7 \\ -4 & 1 & ? & -2 \\ 3 & -1 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 1 & -1 \\ -1 & ? & -1 & 0 \\ -1 & -1 & ? & 0 \\ 1 & 1 & 2 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 1 & 1 \\ -2 & ? & -2 & 5 \\ 4 & -4 & ? & -5 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 2 & -1 \\ 0 & ? & 0 & -2 \\ 0 & -1 & ? & 1 \\ 0 & 2 & -2 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 0 \ -2 \ 1 \ -2 \ 2 \) \text{, } (\ 0 \ -1 \ 1 \ 0 \ -1 \) \text{, } (\ 2 \ -1 \ 1 \ 1 \ -2 \) \text{, } (\ -2 \ -1 \ 0 \ -3 \ 4 \) \text{, }$$

son independientes?

Ejercicio 3

Comprobar si la upla (-7 1 9 -5) es combinación lineal de la uplas

(
$$-2$$
 $\;-1$ $\;1$ $\;-3$), (2 0 $\;-1$ 1), (0 $\;-1$ 0 $\;-2$),

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} \mathbf{1} & \mathbf{0} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & -\mathbf{1} & \mathbf{1} \end{array} \right)^{-1} \boldsymbol{.} \boldsymbol{X} \boldsymbol{.} \left(\begin{array}{ccc} \mathbf{1} & -\mathbf{1} & \mathbf{3} \\ \mathbf{0} & \mathbf{2} & -\mathbf{3} \\ \mathbf{0} & -\mathbf{1} & \mathbf{2} \end{array} \right)^{-1} = \left(\begin{array}{ccc} \mathbf{4} & -\mathbf{1} & -\mathbf{7} \\ \mathbf{2} & \mathbf{0} & -\mathbf{3} \\ \mathbf{3} & -\mathbf{3} & -\mathbf{9} \end{array} \right)$$

$$1) \quad \begin{pmatrix} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 0 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & -2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & 1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 2 & 2 & 1 & a \\ 0 & 0 & 1 & 0 \\ 1 & -1 & -1 & -1 \\ 0 & 1 & -1 & 2 \end{pmatrix} \text{ tenga determinante igual a 11?}$$

1)
$$-5$$
 2) 0 3) 2 4) -1 5) 3

Encontrar la solución del sistema

$$x_1 + 3 x_2 + 5 x_3 == 5$$

 $5 x_2 + 8 x_3 == -4$
 $-2 x_2 - 3 x_3 == -2$
 $-x_1 - 2 x_2 - 4 x_3 == 5$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

2)
$$\begin{pmatrix} ? \\ ? \\ 5 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 7 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 8 \end{pmatrix}, \begin{pmatrix} ? \\ -6 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 0 \end{pmatrix} \rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ -2 \end{pmatrix} + \langle \begin{pmatrix} ? \\ 6 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 4 \end{pmatrix}, \begin{pmatrix} ? \\ \emptyset \\ ? \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	7K	3K	12K	2K
harinas vegetales	5K	1K	11K	1K
harinas de pescado	4K	1K	8K	1K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 25K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 7.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ -1 & -2 & 3 & 2 \\ 0 & -1 & 0 & 0 \end{pmatrix}.$$

$$1) \quad \begin{pmatrix} ? & -6 & -3 & -2 \\ 1 & ? & 1 & 1 \\ 1 & -1 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -2 & -3 & 1 \\ 0 & ? & -2 & 1 \\ 0 & 0 & ? & 0 \\ 0 & -1 & -1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 0 & ? & 0 & -1 \\ 1 & -3 & ? & -5 \\ -1 & 4 & -1 & ? \end{pmatrix} \quad 4)$$

Ejercicio 2

¿Cuántas de las uplas

$$(-1\ 0\ -1\ -2)$$
, $(-2\ 1\ 1\ 2)$, $(0\ -2\ -1\ 0)$, $(-4\ 2\ 2\ 4)$,

son independientes?

Ejercicio 3

Comprobar si la upla $(-5 -6 \ 5)$ es combinación lineal de la uplas

$$(0 -1 -2), (-2 1 1),$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} -2 & -3 \\ 3 & 4 \end{array}\right)^{-1} \boldsymbol{.} \left(X + \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)\right) = \left(\begin{array}{cc} 3 & 6 \\ -2 & -4 \end{array}\right)$$

$$1)\quad \left(\begin{array}{cc} -1 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{cc} 0 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{cc} 2 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{cc} \star & -2 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{cc} \star & 0 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} -1 & -1 & 0 & 0 \\ 1 & a & 1 & -1 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & 1 & 1 \end{pmatrix} \text{ tenga determinante igual a 1?}$$

Encontrar la solución del sistema

$$\begin{array}{l} -2\;x_1-3\;x_2+x_3+5\;x_4+3\;x_5=1\\ 3\;x_1+4\;x_2+3\;x_3+x_4+x_5=2\\ 7\;x_1+10\;x_2+x_3-9\;x_4-5\;x_5=2 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 1 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -3 \\ ? \\ ? \\ ? \\ -9 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 6 \end{pmatrix}$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 3 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 8 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 18 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -18 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	25K	22K	34K	11K
harinas vegetales	15K	16K	21K	7K
harinas de pescado	3K	7K	5K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 180K 112K 28K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 5) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?

Ejercicio 1

Ejercicio 2

```
¿Cuántas de las uplas

( -2 -2 2 0 ), ( 2 2 0 -1 ), ( -2 0 -2 2 ),

son independientes?

1) 1 2) 2 3) 3
```

Ejercicio 3

Comprobar si la upla (3 -5 -1) es combinación lineal de la uplas $(-4 \ 2 \ 0)$, $(-2 \ 1 \ 0)$, (3 -5 -1) es combinación lineal de la uplas (3 -5 -1) es

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 4 & -1 \\ -7 & 2 \end{pmatrix} \cdot \begin{pmatrix} X - \begin{pmatrix} -3 & -1 \\ -2 & -1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 13 & -1 \\ -22 & 2 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} -2 & 1 & -1 & -1 \\ 1 & -2 & 1 & a \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 \end{pmatrix} \text{ tenga determinante igual a } -3?$$

Encontrar la solución del sistema

$$x_1 + x_2 - 3 x_3 + 5 x_4 == 6$$

 $-3 x_1 - x_2 + 3 x_3 + x_4 == -4$
 $-2 x_1 - x_2 + 3 x_3 - 2 x_4 == -5$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 9 \end{pmatrix} + \langle \begin{pmatrix} ? \\ 9 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -8 \\ ? \end{pmatrix}, \begin{pmatrix} 3 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 4 \\ ? \end{pmatrix} \rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -2 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ -6 \end{pmatrix}, \begin{pmatrix} -4 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 10 \\ ? \end{pmatrix} \rangle$$

3)
$$\begin{pmatrix} -4 \\ ? \\ ? \\ ? \\ \end{pmatrix} + \left\langle \begin{pmatrix} 3 \\ ? \\ ? \\ ? \\ ? \\ \end{pmatrix}, \begin{pmatrix} 4 \\ ? \\ ? \\ ? \\ \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ 0 \\ ? \end{pmatrix} + \langle \begin{pmatrix} 0 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -8 \\ ? \\ ? \end{pmatrix} \rangle$$

5)
$$\begin{pmatrix} 1 \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ 2 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 6 \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	29K	21K	15K
Pienso marca 2	4K	3K	2K
Pienso marca 3	2K	2K	0K
Pienso marca 4	32K	23K	17K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 72K 53K 36K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 6.
- 1) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} -1 & 1 & -1 & -1 \\ -4 & 3 & -3 & -3 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} ? & -2 & 1 & -4 \\ -4 & ? & 0 & 5 \\ -2 & 0 & ? & 2 \\ -3 & 0 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 0 & ? & 1 & -1 \\ -1 & -1 & ? & -3 \\ 2 & 3 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ 1 & ? & -1 & 0 \\ 5 & -5 & ? & 3 \\ 5 & -2 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & 0 \\ 0 & ? & -1 & 1 \\ 0 & 0 & ? & 0 \\ -1 & 3 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

son independientes?

Ejercicio 3

Comprobar si la upla ($2\ 2\ 4\ -2$) es combinación lineal de la uplas

$$(-1 \ -1 \ -2 \ 1)$$
, $(-2 \ -2 \ -4 \ 2)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X - \left(\begin{array}{ccc} 1 & 1 & 0 \\ -1 & 1 & -1 \\ 0 & 1 & 0 \end{array}\right)\right) \boldsymbol{.} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 2 & 1 \\ -1 & -1 & 0 \end{array}\right) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ -2 & -3 & -1 \\ 0 & 1 & 0 \end{array}\right)$$

$$1) \quad \begin{pmatrix} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} \star & -2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & \star & 0 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & \star & 2 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} -2 & 2 & 4 & 3 \\ 2 & 2 & 3 & 2 \\ -2 & 3 & 6 & 4 \\ a & 2 & 1 & 0 \end{pmatrix} \text{ tenga determinante igual a 6?}$$

$$1) \quad -2 \qquad 2) \quad 1 \qquad 3) \quad -1 \qquad 4) \quad 4 \qquad 5) \quad 3$$

Encontrar la solución del sistema

$$x_1 + 6 x_2 + 2 x_3 = 5$$

 $-x_1 - 5 x_2 - 2 x_3 = 2$
 $3 x_2 + x_3 = -1$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

2)
$$\begin{pmatrix} ? \\ -8 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 10 \end{pmatrix}, \begin{pmatrix} ? \\ -3 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 3 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -1 \end{pmatrix} \rangle$$

5)
$$\begin{pmatrix} ? \\ 6 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -1 \\ ? \end{pmatrix}, \begin{pmatrix} 0 \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	4K	3K	6K	1K
harinas vegetales	7K	6K	13K	3K
harinas de pescado	3K	2K	4K	1K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 45K 95K 33K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 13.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=5
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 3) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

$$1) \quad \begin{pmatrix} ? & -1 & -2 & 2 \\ 0 & ? & 3 & -4 \\ 1 & 1 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -1 & -1 & -2 \\ -2 & ? & 3 & 5 \\ 1 & -1 & ? & 0 \\ 1 & -2 & -3 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & 0 & -1 & -1 \\ 0 & ? & 1 & 0 \\ 1 & 0 & ? & 1 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 4$$

$$\begin{pmatrix} ? & 0 & -1 & -2 \\ 1 & ? & 1 & -2 \\ 0 & 0 & ? & 0 \\ -1 & -2 & -3 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & 0 & -1 & -1 \\ 3 & ? & 0 & -2 \\ 2 & 1 & ? & -1 \\ -3 & 0 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & 0 & -1 \\ -1 & ? & 3 & -2 \\ 1 & -2 & ? & 4 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & -1 \\ 0 & ? & 1 & 0 \\ 0 & 1 & ? & 0 \\ 1 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

(
$$-2\ 1\ 0\ 1$$
), ($1\ -2\ -2\ -2$), ($1\ 2\ 1\ 2$),

son independientes?

Ejercicio 3

Comprobar si la upla (7 -7 0) es combinación lineal de la uplas

$$(\ -4 \ \ -4 \ \ 0 \) \text{ , } \ (\ -1 \ \ -1 \ \ 2 \) \text{ , } \ (\ 1 \ \ -1 \ \ -2 \) \text{ , } \ (\ -3 \ \ -3 \ \ 2 \) \text{ , } \ (\ -2 \ \ -2 \ \ 0 \) \text{ , }$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X - \left(\begin{array}{cc} -\mathbf{1} & \mathbf{0} \\ -\mathbf{1} & -\mathbf{1} \end{array}\right)\right) \boldsymbol{\cdot} \left(\begin{array}{cc} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{2} \end{array}\right) = \left(\begin{array}{cc} \mathbf{1} & \mathbf{1} \\ \mathbf{4} & \mathbf{6} \end{array}\right)$$

$$1)\quad \left(\begin{array}{cc} -1 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{cc} 1 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{cc} 2 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{cc} \star & -1 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{cc} \star & 0 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} -1 & -2 & a & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix} \text{ tenga determinante igual a } -10?$$

Encontrar la solución del sistema

$$-5 x_1 + 3 x_2 + x_3 + x_4 == 4$$

 $-2 x_1 + 6 x_2 + 4 x_3 + 6 x_4 == 4$
 $4 x_1 + x_3 + 2 x_4 == -2$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 2 \end{pmatrix} + \langle \begin{pmatrix} \vdots \\ \vdots \\ 2 \\ -6 \\ \vdots \end{pmatrix}, \begin{pmatrix} \vdots \\ 2 \\ -6 \\ \vdots \end{pmatrix} \rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -6 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 9 \\ ? \end{pmatrix} \rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ 9 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -6 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -4 \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -3 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 11 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -3 \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 10 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -4 \\ ? \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	6K	2K	3K
Pienso marca 2	11K	4K	5K
Pienso marca 3	9K	3K	5K
Pienso marca 4	10K	3K	6K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 135K 45K 71K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 14.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4
- 3) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 0 & -2 & 1 & 1 \\ -1 & 1 & -1 & -2 \\ 1 & 2 & -1 & 0 \\ 1 & 3 & -2 & 0 \end{pmatrix} .$$

$$1) \begin{pmatrix} ? & -3 & 6 & -2 \\ 1 & ? & -2 & 0 \\ -3 & 2 & ? & 2 \\ -1 & 1 & -2 & ? \end{pmatrix} \quad 2) \begin{pmatrix} ? & -2 & -1 & -1 \\ 0 & ? & 0 & 1 \\ 0 & 0 & ? & 3 \\ -1 & 2 & 1 & ? \end{pmatrix} \quad 3) \begin{pmatrix} ? & 1 & 3 & -1 \\ -2 & ? & -1 & 0 \\ -2 & -1 & ? & -1 \\ -1 & -1 & -2 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & 1 & 4 \\ 0 & ? & 0 & 1 \\ -1 & 0 & ? & -1 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 5) \begin{pmatrix} ? & -1 & 0 & 1 \\ 0 & ? & 1 & 1 \\ 0 & -1 & ? & 0 \\ 0 & 1 & -2 & ? \end{pmatrix} \quad 6) \begin{pmatrix} ? & -1 & 1 & -2 \\ 2 & ? & 0 & 1 \\ 2 & 1 & ? & -1 \\ -3 & -3 & -1 & ? \end{pmatrix} \quad 7) \begin{pmatrix} ? & -1 & 1 & 0 \\ -5 & ? & 3 & -1 \\ 8 & 4 & ? & 0 \\ 6 & 3 & -4 & ? \end{pmatrix}$$

Ejercicio 2

```
¿Cuántas de las uplas
(1 -1 0 2), (1 1 1 -1), (2 2 2 0), (2 -2 1 2),
son independientes?
1) 1 2) 2 3) 3 4) 4
```

Ejercicio 3

Comprobar si la upla (-2 -8 0) es combinación lineal de la uplas (2 1 -1), (0 -2 1), (-1 1 -2), (0 -2 1)

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X + \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & -2 \\ 2 & 1 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz $\begin{pmatrix} 2 & 1 & 0 & 0 \\ -2 & -1 & a & 1 \\ 0 & 1 & -1 & -1 \\ 1 & 0 & -2 & 1 \end{pmatrix} \text{ tenga determinante igual a -2?}$ $1) 0 \quad 2) \quad 2 \quad 3) \quad 5 \quad 4) \quad 4 \quad 5) \quad -3$

Encontrar la solución del sistema

$$\begin{array}{l} 5\;x_1\,-\,4\;x_2\,+\,2\;x_3\,-\,5\;x_4=-\,5\\ -4\;x_1\,-\,3\;x_2\,+\,x_3\,-\,2\;x_4=-\,1\\ 9\;x_1\,-\,x_2\,+\,x_3\,-\,3\;x_4=-\,4 \end{array}$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

3)
$$\begin{pmatrix} 0 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 13 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 7 \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ 8 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 33 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 8 \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ 2 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ 11 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 6 \\ ? \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	3K	2K	1K	1K
harinas vegetales	1K	1K	1K	1K
harinas de pescado	2K	4K	3K	4K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 18K 8K 22K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 4 sea igual a 0.

- 1) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 2 & -1 & 0 & 2 \\ 3 & -1 & -1 & 2 \\ 2 & 0 & 3 & 4 \\ -2 & 0 & -2 & -3 \end{pmatrix}$$
 .
$$1) \begin{pmatrix} ? & -4 & 1 & -2 \\ -1 & ? & 0 & -3 \\ 1 & -2 & ? & 0 \\ -1 & 1 & -1 & ? \end{pmatrix} \quad 2) \begin{pmatrix} ? & -1 & -3 & -4 \\ -3 & ? & 2 & 2 \\ 2 & -2 & ? & -4 \\ -2 & 2 & 4 & ? \end{pmatrix} \quad 3) \begin{pmatrix} ? & -3 & 4 & 1 \\ 2 & ? & -3 & 0 \\ -1 & -3 & ? & 1 \\ 4 & 5 & -6 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & -1 & 0 \\ -2 & ? & 1 & -1 \\ 3 & 1 & ? & 2 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 5) \begin{pmatrix} ? & -1 & -1 & 0 \\ -2 & ? & 1 & 1 \\ -3 & 1 & ? & 0 \\ 1 & -1 & -1 & ? \end{pmatrix} \quad 6) \begin{pmatrix} ? & -1 & 1 & 2 \\ -2 & ? & 0 & 0 \\ -2 & 0 & ? & 3 \\ -4 & 1 & -1 & ? \end{pmatrix} \quad 7) \begin{pmatrix} ? & -1 & 1 & 4 \\ 1 & ? & 0 & 1 \\ 1 & -2 & ? & -3 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 2\ 0\ 2\ 2\)\text{, } (\ 1\ 2\ -2\ -2\)\text{, } (\ -1\ -1\ 0\ -1\)\text{, } (\ -3\ -1\ -2\ -3\)\text{,}$$

son independientes?

$$1) \ 1 \ 2) \ 2 \ 3) \ 3 \ 4) \ 4$$

Ejercicio 3

Comprobar si la upla $(\ -3\ 2\ 9\)$ es combinación lineal de la uplas

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{0} \end{pmatrix} \cdot \mathbf{X} + \begin{pmatrix} -\mathbf{1} & -\mathbf{1} \\ \mathbf{3} & \mathbf{2} \end{pmatrix} = \begin{pmatrix} -\mathbf{3} & -\mathbf{2} \\ \mathbf{4} & \mathbf{3} \end{pmatrix}$$

$$\mathbf{1} \quad \begin{pmatrix} -\mathbf{1} & \star \\ \star & \star \end{pmatrix} \qquad \mathbf{2} \quad \begin{pmatrix} \mathbf{0} & \star \\ \star & \star \end{pmatrix} \qquad \mathbf{3} \quad \begin{pmatrix} \star & -\mathbf{2} \\ \star & \star \end{pmatrix} \qquad \mathbf{4} \quad \begin{pmatrix} \star & \mathbf{0} \\ \star & \star \end{pmatrix} \qquad \mathbf{5} \quad \begin{pmatrix} \star & \mathbf{1} \\ \star & \star \end{pmatrix}$$

Ejercicio 5

$$\left(\begin{array}{ccccc} 1 & -1 & -1 & 0 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & a & 2 \\ -1 & 0 & -1 & 1 \end{array} \right) \ \ \text{tenga determinante igual a 10?}$$

Encontrar la solución del sistema

$$\begin{array}{l} -x_1-x_2-5\;x_3+5\;x_4-2\;x_5=-4\\ 2\;x_1+x_2-9\;x_3+2\;x_4-6\;x_5=-2\\ 3\;x_1+2\;x_2-4\;x_3-3\;x_4-4\;x_5==2 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -8 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 5 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 4 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ 5 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -9 \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ 9 \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ 3 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 5 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ 0 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -19 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 8 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} -9 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 13 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -9 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -9 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ 7 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 11 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 13 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -13 \\ ? \\ ? \\ ? \end{pmatrix} \right)$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	8K	6K	8K	5K
harinas vegetales	12K	9K	13K	8K
harinas de pescado	22K	17K	24K	15K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 58K 89K 167K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 10.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4
- 3) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & -2 & 0 & -1 \\ -2 & 7 & -1 & 3 \\ 2 & -7 & 2 & -3 \\ 3 & -10 & 3 & -4 \end{pmatrix}.$$

$$\begin{pmatrix} ? & -1 & -1 & -2 \\ -1 & ? & 1 & 2 \\ 0 & 0 & ? & -2 \\ 0 & 0 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ -2 & ? & -1 & 3 \\ -1 & 1 & ? & 2 \\ -1 & 1 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ -1 & ? & 0 & 1 \\ 2 & -1 & ? & -2 \\ 3 & -3 & 2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ -5 & ? & 0 & -1 \\ -4 & 1 & ? & -1 \\ 5 & -1 & -2 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(0 -2 -2 1)$$
, $(1 -1 -2 2)$, $(-2 0 -2 2)$, $(-1 0 -1 1)$,

son independientes?

Ejercicio 3

Comprobar si la upla (4 4 2) es combinación lineal de la uplas

$$(-4 -4 -2)$$
, $(-2 -2 -1)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{1} & -\mathbf{1} \\ \mathbf{0} & \mathbf{1} \end{array}\right) \boldsymbol{.} \boldsymbol{X} \boldsymbol{.} \left(\begin{array}{cc} \mathbf{1} & -\mathbf{1} \\ -\mathbf{2} & \mathbf{3} \end{array}\right) = \left(\begin{array}{cc} -\mathbf{1} & \mathbf{2} \\ -\mathbf{1} & \mathbf{1} \end{array}\right)$$

$$1)\quad \left(\begin{array}{cc} -2 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{cc} 1 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{cc} 0 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{cc} \star & -1 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{cc} \star & 0 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$1) \quad -4 \qquad 2) \quad 5 \qquad 3) \quad 1 \qquad 4) \quad -5 \qquad 5) \quad 2$$

Encontrar la solución del sistema

$$5 x_1 + 2 x_3 + x_4 - x_5 == -3$$

-4 $x_1 + x_2 - 5 x_3 - 2 x_4 + 3 x_5 == -5$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

$$2) \quad \begin{pmatrix} 3 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 4 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 9 \\ ? \end{pmatrix} \rangle$$

$$3) \quad \begin{pmatrix} 10 \\ ? \\ ? \\ ? \\ ? \\ \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ 1 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -8 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 1 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -4 \\ ? \end{pmatrix}$$

5)
$$\begin{pmatrix} 3 \\ ? \\ ? \\ ? \\ ? \\ \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ .8 \\ ? \\ .4 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 0 \\ ? \\ .4 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 0 \\ ? \\ .4 \end{pmatrix}$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	1K	3K	4K
Pienso marca 2	5K	8K	0K
Pienso marca 3	6K	10K	1K
Pienso marca 4	3K	5K	1K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 9K 15K 3K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 3.
- 1) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 0 & 0 & -1 & 0 \\ -1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 3 & -1 & 2 & 4 \end{pmatrix}.$$

$$1) \quad \begin{pmatrix} ? & -8 & -4 & 3 \\ 2 & ? & -1 & 1 \\ 0 & 1 & ? & 0 \\ 0 & -2 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -5 & -1 & -4 \\ -2 & ? & 0 & 5 \\ 1 & -6 & ? & -2 \\ -1 & 2 & 0 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -1 & 3 & -1 \\ 0 & ? & 1 & 0 \\ -1 & 0 & ? & 0 \\ 2 & 1 & -2 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & 1 & 0 \\ -3 & ? & 0 & 1 \\ -3 & -3 & ? & 1 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -2 & 1 \\ 1 & ? & 3 & -2 \\ 1 & 6 & ? & -5 \\ 0 & 1 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -1 & 4 \\ 0 & ? & 0 & -1 \\ 1 & 2 & ? & -3 \\ 0 & 1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ -6 & ? & -4 & 3 \\ 1 & 3 & ? & -3 \\ -3 & -1 & -2 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$1) \ 1 \ 2) \ 2 \ 3) \ 3 \ 4) \ 4 \ 5) \ 5$$

Ejercicio 3

Comprobar si la upla (-7 -8 5 -2) es combinación lineal de la uplas (-2 1 -1 2), (0 1 -2 1), (-2 1 -2 3), (0 0 -1 1), (2 0 0 -2), (0 1 -1 0), l) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X + \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2 & 0 \\ 0 & -2 & -1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 1 \\ -3 & 2 & 1 \\ 1 & -2 & -4 \end{pmatrix}$$

$$1) \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 2) \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 3) \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 4) \begin{pmatrix} * & 2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 5) \begin{pmatrix} * & * & 1 \\ * & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\left(\begin{array}{ccccc} 1 & 1 & 0 & 2 \\ -2 & 1 & 1 & a \\ 0 & 1 & 0 & -1 \\ -1 & -3 & 1 & 2 \end{array}\right) \text{ tenga determinante igual a 1?}$$

Encontrar la solución del sistema

$$\begin{array}{l} -3\;x_1-x_2+x_3+x_4==-5\\ x_1-3\;x_2+x_3+2\;x_4==-1\\ x_1-x_2-x_3+x_4==5\\ -4\;x_2+x_3+3\;x_4==-1 \end{array}$$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} -2 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ -2 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 7 \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} 7 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 3 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -6 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 3 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ -6 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 9 \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ -4 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 5 \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	9K	2K	5K
Pienso marca 2	11K	1K	5K
Pienso marca 3	37K	4K	17K
Pienso marca 4	17K	2K	8K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 209K 27K 100K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 4 sea igual a 3.

- 1) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 4) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 3 & -1 & 0 & -4 \\ -2 & 1 & 0 & 4 \\ 2 & -2 & 1 & -6 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} ? & 1 & 0 & 0 \\ 2 & ? & 0 & -4 \\ 2 & 4 & ? & -2 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -2 & -2 & 0 \\ 2 & ? & -2 & 2 \\ 0 & 0 & ? & 1 \\ 4 & -6 & -5 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & -1 & 2 \\ -2 & ? & -1 & 2 \\ -1 & -1 & ? & 0 \\ 1 & 1 & -2 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & -5 & 2 \\ 1 & ? & -3 & 2 \\ 0 & 0 & ? & 0 \\ 2 & -4 & -6 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & -1 \\ 0 & ? & -3 & -1 \\ 1 & 0 & ? & 1 \\ 1 & 0 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & -3 \\ 6 & ? & -1 & 5 \\ 6 & 2 & ? & 5 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & 0 & -1 \\ 2 & -3 & ? & -3 \\ -2 & 3 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -2 \ -1 \ -1 \ 1 \ 0 \) \text{,} \ (\ -1 \ 2 \ -2 \ 1 \ -1 \) \text{,} \ (\ 1 \ 1 \ 2 \ 1 \ 2 \) \text{,} \ (\ -2 \ -2 \ 0 \ -1 \ -2 \) \text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (-6 1 -4 -7) es combinación lineal de la uplas

$$(\ -2 \ -1 \ 2 \ 0 \)$$
 , $(\ -1 \ 1 \ 1 \ 2 \)$, $(\ 1 \ 2 \ -1 \ 2 \)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X + \left(\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & 0 & 0 \end{array}\right)\right). \left(\begin{array}{cccc} -1 & 1 & -5 \\ -1 & 1 & -4 \\ 1 & 0 & 2 \end{array}\right) = \left(\begin{array}{cccc} -2 & 2 & -8 \\ -3 & 1 & -6 \\ -1 & 2 & -7 \end{array}\right)$$

$$1) \ \, \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 2) \ \, \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 3) \ \, \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 4) \ \, \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 5) \ \, \begin{pmatrix} * & 2 & * \\ * & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 2 & 1 & a & 2 \\ 0 & 1 & -2 & 0 \\ 0 & -1 & 2 & 1 \\ 1 & 2 & 0 & -1 \end{pmatrix} \text{ tenga determinante igual a } -1?$$

Encontrar la solución del sistema

$$x_1 - 6 x_2 - 5 x_3 + 9 x_4 == -5$$

 $x_2 + x_3 - x_4 == 2$

$$6 x_1 - 2 x_3 - 2 x_4 == -10$$

 $-2 x_1 + 2 x_2 + 2 x_3 - 3 x_4 == 3$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ ? \\ 4 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 5 \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ 9 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -6 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -6 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -8 \end{pmatrix}, \begin{pmatrix} ? \\ 5 \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ 3 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -6 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -10 \\ ? \end{pmatrix}, \begin{pmatrix} 2 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ -4 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -8 \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ 1 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 8 \\ ? \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	3K	12K	3K	5K
harinas vegetales	3K	10K	3K	4K
harinas de pescado	17K	61K	17K	25K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 82K 69K 420K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 3 sea igual a 3.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 2) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=5
- 5) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\left(\begin{array}{ccccc} -2 & -3 & -5 & -8 \\ -1 & 2 & 1 & 4 \\ 1 & 1 & 1 & 2 \\ 1 & 4 & 4 & 9 \end{array} \right).$

$$1) \quad \left(\begin{array}{ccccc} ? & -3 & 1 & 0 \\ -5 & ? & -2 & 0 \\ 0 & -1 & ? & -1 \\ -1 & 2 & -1 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{ccccccc} ? & -2 & 0 & 1 \\ 1 & ? & 1 & 0 \\ 1 & -4 & ? & 3 \\ 2 & -5 & 0 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{cccccccc} ? & -1 & 0 & -1 \\ 3 & ? & -5 & 3 \\ 2 & 6 & ? & 3 \\ 2 & 4 & -3 & ? \end{array}\right) \quad 4)$$

$$\begin{pmatrix} ? & -2 & -1 & 2 \\ -4 & ? & 11 & -10 \\ -3 & 5 & ? & -6 \\ 3 & -6 & -7 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & 2 \\ -1 & ? & 0 & -1 \\ -4 & 0 & ? & -2 \\ -3 & 2 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 1 & 1 \\ 0 & ? & -2 & 0 \\ 0 & 2 & ? & 1 \\ 0 & -1 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 3 \\ -1 & ? & -2 & -2 \\ -1 & 3 & ? & -4 \\ 0 & -1 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

(0 1 2 2), (0 1
$$-2$$
 1), (-1 2 -1 -2),

son independientes?

Ejercicio 3

Comprobar si la upla (6 0 1) es combinación lineal de la uplas

$$(2 -1 1)$$
, $(-1 0 2)$, $(-2 0 4)$, $(0 -2 -1)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} -1 & -1 \\ 3 & 2 \end{array}\right) . X - \left(\begin{array}{cc} 2 & 1 \\ -1 & 0 \end{array}\right) = \left(\begin{array}{cc} -2 & -3 \\ 1 & 5 \end{array}\right)$$

$$1)\quad \left(\begin{array}{cc} -1 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{cc} 0 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{cc} 2 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{cc} \star & -1 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{cc} \star & 0 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} -1 & -1 & 2 & -2 \\ 1 & 0 & 1 & 0 \\ -1 & a & 1 & 1 \\ -1 & 2 & 3 & -3 \end{pmatrix} \text{ tenga determinante igual a } -22?$$

Encontrar la solución del sistema

$$-8 x_2 - 5 x_3 - 4 x_4 = 1$$

 $-2 x_2 - x_3 - x_4 = -2$
 $4 x_2 + 3 x_3 + 2 x_4 = -5$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} 0 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 0 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -2 \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 12 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 3 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 3 \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ -6 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 1 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 2 \\ ? \end{pmatrix} \rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ -10 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 9 \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	2K	3K	4K
Pienso marca 2	2K	4K	5K
Pienso marca 3	2K	4K	6K
Pienso marca 4	3K	6K	8K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 21K 51K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 10.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 2) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 2 & -1 & 0 & 2 \\ -1 & 1 & -1 & -3 \\ -3 & 2 & -1 & -6 \\ 2 & -1 & 1 & 4 \end{pmatrix}.$$

$$1) \quad \begin{pmatrix} ? & 0 & 1 & 1 \\ -1 & ? & 0 & 2 \\ 1 & -2 & ? & 1 \\ -1 & 1 & -1 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -3 & 1 & 0 \\ 6 & ? & -1 & 0 \\ -5 & -4 & ? & 0 \\ 6 & 4 & -2 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & -1 & 2 \\ 0 & ? & 0 & -1 \\ 1 & 3 & ? & -1 \\ -1 & -2 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & 3 & 2 \\ -3 & ? & -3 & -2 \\ 1 & -1 & ? & 1 \\ -1 & 2 & -2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ 0 & ? & -1 & 0 \\ 0 & -1 & ? & 0 \\ -1 & 5 & -4 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 4 & -2 \\ -1 & ? & 5 & -3 \\ 0 & -1 & ? & 2 \\ 0 & -3 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 5 & 3 \\ -1 & ? & -2 & -1 \\ 1 & -1 & ? & 1 \\ 0 & 2 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(0 \ 2 \ 1 \ 0)$$
, $(1 \ 0 \ -2 \ 1)$, $(1 \ 0 \ 2 \ 1)$,

son independientes?

Ejercicio 3

Comprobar si la upla (2 0 -4) es combinación lineal de la uplas

$$(20-4)$$
, $(10-2)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc}0&1\\-1&0\end{array}\right).X+\left(\begin{array}{cc}-1&0\\0&-1\end{array}\right)=\left(\begin{array}{cc}0&-1\\-1&-2\end{array}\right)$$

$$1)\quad \left(\begin{array}{cc} -2 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{cc} -1 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{cc} 0 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{cc} 2 & \star \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{cc} \star & 1 \\ \star & \star \end{array}\right)$$

Ejercicio 5

Encontrar la solución del sistema

$$-x_1 - 10 x_2 + 5 x_3 + x_4 + 3 x_5 = -4$$

 $3 x_1 - x_3 + x_4 + x_5 = 4$

$$x_1 - 5 x_2 + 2 x_3 + x_4 + 2 x_5 = 0$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -3 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -7 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -6 \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ 0 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -5 \\ ? \\ ? \\ -5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -5 \\ ? \\ ? \\ ? \\ -3 \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ 1 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 1 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 4 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 0 \end{pmatrix}$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	24K	9K	17K
Pienso marca 2	22K	9K	15K
Pienso marca 3	32K	13K	22K
Pienso marca 4	3K	1K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 225K 88K 156K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 2 sea igual a 4.
- 1) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 3) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?

Ejercicio 1

$$\begin{array}{c} \text{Calcular la inversa de la matriz} & \begin{pmatrix} 3 & -2 & 4 & 0 \\ 2 & 0 & 3 & 1 \\ -1 & 1 & -1 & 0 \\ 1 & 0 & 2 & 1 \end{pmatrix}. \\ 1) & \begin{pmatrix} ? & -11 & 3 & -15 \\ 3 & ? & 2 & -7 \\ 0 & -3 & ? & -4 \\ -1 & 3 & 0 & ? \end{pmatrix} & 2) & \begin{pmatrix} ? & 2 & -2 & -2 \\ 0 & ? & 1 & -1 \\ 1 & -1 & ? & 1 \\ -1 & 0 & -2 & ? \end{pmatrix} & 3) & \begin{pmatrix} ? & -2 & -3 & -4 \\ 0 & ? & 2 & 2 \\ 1 & -1 & ? & -1 \\ 0 & 0 & 0 & ? \end{pmatrix} & 4) \\ & & \begin{pmatrix} ? & -1 & -2 & -1 \\ 0 & ? & -3 & -2 \\ 0 & 2 & ? & 1 \\ -1 & 2 & 3 & ? \end{pmatrix} & 5) & \begin{pmatrix} ? & -1 & 1 & 0 \\ 0 & ? & 0 & 1 \\ -1 & -2 & ? & -2 \\ 0 & -1 & 0 & ? \end{pmatrix} & 6) & \begin{pmatrix} ? & 0 & -2 & -1 \\ 0 & ? & 1 & 1 \\ -2 & 1 & ? & -1 \\ -3 & 0 & 4 & ? \end{pmatrix} & 7) & \begin{pmatrix} ? & 0 & -1 & 0 \\ -2 & ? & 1 & 1 \\ 0 & 1 & ? & -1 \\ -1 & 1 & 0 & ? \end{pmatrix}$$

Ejercicio 2

```
¿Cuántas de las uplas
(2 -1 0 -1), (-2 -2 -1 1), (0 -1 -1 2),
son independientes?

1) 1 2) 2 3) 3
```

Ejercicio 3

Comprobar si la upla (0 9 -2) es combinación lineal de la uplas (-1 1 2), (-1 0 -1), (0 -2 -2), 1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X + \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & 1 \\ * & * \end{pmatrix}$$

Ejercicio 5

$$\left(\begin{array}{ccccc} 2 & -1 & 2 & -1 \\ -1 & 1 & -1 & 1 \\ -2 & -1 & 4 & -2 \\ a & -1 & 1 & 0 \end{array} \right) \ \ \text{tenga determinante igual a 12?}$$

$$1) \quad -2 \qquad 2) \quad 4 \qquad 3) \quad -4 \qquad 4) \quad -5 \qquad 5) \quad -3$$

Encontrar la solución del sistema

$$x_1 + 2 x_2 + 3 x_3 - 4 x_4 == 1$$

 $-2 x_2 + 6 x_3 + 2 x_4 == -6$
 $x_1 + 3 x_2 - 5 x_4 == 4$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ 3 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 0 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 0 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ \end{pmatrix} + \left\langle \begin{pmatrix} -9 \\ ? \\ ? \\ ? \\ ? \\ \end{pmatrix}, \begin{pmatrix} 2 \\ ? \\ ? \\ ? \\ ? \\ \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ 1 \\ ? \end{pmatrix} + \langle \begin{pmatrix} -10 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 0 \\ ? \\ ? \end{pmatrix}$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 5 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -7 \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	6K	5K	3K	2K
harinas vegetales	7K	6K	4K	2K
harinas de pescado	1K	1K	0K	1K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 27K 32K 4K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 5.
- 1) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 5 & -2 & -3 & -3 \\ 0 & 2 & 0 & 3 \\ 2 & 2 & -1 & 3 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$

$$1) \quad \left(\begin{array}{ccccc} ? & -4 & 3 & 0 \\ 0 & ? & 0 & -3 \\ -2 & -7 & ? & 0 \\ 0 & -1 & 0 & ? \end{array} \right) \quad 2) \quad \left(\begin{array}{cccccc} ? & -5 & 1 & -3 \\ 1 & ? & 1 & -2 \\ 2 & -7 & ? & -4 \\ -1 & 2 & 0 & ? \end{array} \right) \quad 3) \quad \left(\begin{array}{cccccc} ? & -3 & 2 & -1 \\ 0 & ? & 2 & -1 \\ -1 & -8 & ? & -3 \\ 0 & 2 & -1 & ? \end{array} \right) \quad 4)$$

$$\begin{pmatrix} ? & -2 & -1 & -2 \\ 1 & ? & -1 & -2 \\ 1 & -2 & ? & -1 \\ -1 & 1 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -2 & 0 \\ 2 & ? & 3 & 1 \\ 0 & 0 & ? & 0 \\ 0 & 1 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ 0 & ? & 1 & 0 \\ 2 & -1 & ? & 1 \\ 1 & -1 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & -2 \\ -1 & ? & -2 & 1 \\ 10 & 2 & ? & 4 \\ 4 & 1 & 6 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -1\ -1\ 0\ -2\ 1\)\text{, }(\ -1\ 0\ 2\ -1\ -1\)\text{, }(\ -2\ -1\ 2\ -3\ 0\)\text{, }(\ -1\ 0\ 2\ 2\ 1\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (4 2 5 -4) es combinación lineal de la uplas

$$(\ 0\ 2\ 1\ -2\)\ \text{,}\ (\ 2\ 0\ 2\ -1\)\ \text{,}\ (\ -2\ 2\ -1\ -1\)\ \text{,}$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cccc} 1 & -1 & 0 \\ 2 & -1 & 1 \\ 3 & -3 & 1 \end{array}\right) \cdot \left(X - \left(\begin{array}{cccc} 1 & 2 & -1 \\ 0 & 1 & 0 \\ -1 & -2 & 2 \end{array}\right)\right) = \left(\begin{array}{cccc} -3 & 1 & 0 \\ -3 & 3 & -3 \\ -7 & 6 & -3 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} \star & 0 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & 2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{cccc} \star & \star & -2 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 0 & 2 & -1 & -1 \\ -1 & 2 & -3 & -2 \\ 1 & 1 & 3 & 3 \\ -2 & a & 1 & -2 \end{pmatrix} \text{ tenga determinante igual a } -25?$$

$$1) \ \ 3 \ \ \ 2) \ \ 0 \ \ \ 3) \ \ 5 \ \ \ 4) \ \ 2 \ \ \ 5) \ \ -2$$

Encontrar la solución del sistema

$$\begin{array}{l} 3\;x_1 + 3\;x_2 - x_3 + 3\;x_4 - 3\;x_5 + 4\;x_6 = 2 \\ -10\;x_1 - 9\;x_2 + 4\;x_3 - 5\;x_4 - x_5 - x_6 = -2 \\ 8\;x_1 + 8\;x_2 - 2\;x_3 - 10\;x_4 - 2\;x_5 + 8\;x_6 = -10 \\ 11\;x_1 + 10\;x_2 - 4\;x_3 - 3\;x_4 + 3\;x_5 + x_6 = -5 \end{array}$$

tomando como parámetro, si ello fuera necesario, las

- últimas variables y despejando las primeras (es decir al resolver
 - por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
- . Expresar la solución mediante combinaciones lineales.

$$2) \quad \begin{pmatrix} ? \\ ? \\ -25 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 30 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -21 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -17 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} -3 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -6 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	7K	9K	1K
Pienso marca 2	5K	6K	1K
Pienso marca 3	4K	4K	1K
Pienso marca 4	8K	4K	4K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 35K 45K 5K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 5.
- 1) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{ccc} \emptyset & 1 & \emptyset & 1 \\ \emptyset & 2 & \emptyset & 1 \\ 1 & \emptyset & 1 & \emptyset \\ -1 & \emptyset & 0 & 1 \end{array}\right)$$

$$1) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ -1 & ? & 0 & 0 \\ -2 & 1 & ? & 1 \\ 2 & -1 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -3 & -1 & -1 \\ 0 & ? & 0 & 1 \\ 1 & 0 & ? & 0 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -3 & 0 & 5 \\ -1 & ? & -1 & -2 \\ 2 & -1 & ? & 2 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -3 & 3 & 0 \\ 0 & ? & 0 & 1 \\ 0 & 2 & ? & 2 \\ 0 & -1 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & -1 & -3 \\ -1 & ? & 1 & 2 \\ -1 & 0 & ? & 2 \\ -2 & 1 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -2 & -1 & 0 \\ 1 & ? & 0 & 0 \\ 1 & 0 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -2 & 0 & -1 \\ 1 & ? & 0 & -1 \\ 1 & -1 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -2 \ -1 \ -3 \ 2 \ 0 \) \text{,} \ (\ 0 \ -1 \ 2 \ 0 \ 1 \) \text{,} \ (\ 0 \ 1 \ -2 \ 2 \ 0 \) \text{,} \ (\ 2 \ 2 \ 1 \ 0 \ 0 \) \text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (2 -7 0 0) es combinación lineal de la uplas

$$(\ -2 \ 2 \ 1 \ -1 \) \text{, } (\ -4 \ 0 \ -1 \ 0 \) \text{, } (\ 2 \ 2 \ 2 \ -1 \) \text{, } (\ -1 \ -1 \ -2 \ 2 \) \text{, } (\ 2 \ 2 \ 1 \ -1 \) \text{,}$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X - \left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 2 & -2 \\ 1 & 2 & -1 \end{array}\right)\right). \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} -2 & 0 & 2 \\ -4 & -2 & -1 \\ -4 & -3 & -5 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{ccccc} 0 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{ccccc} 1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{ccccc} \star & -2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & \star & -2 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ 1 & 1 & 2 & -1 \\ -2 & 0 & a & 1 \end{pmatrix} \text{ tenga determinante igual a -1?}$$

$$1) \quad -5 \qquad 2) \quad -1 \qquad 3) \quad -2 \qquad 4) \quad 4 \qquad 5) \quad 1$$

Encontrar la solución del sistema

$$\begin{array}{l} 9\;x_1\,+\,7\;x_2\,-\,5\;x_3\,-\,3\;x_4\,=\,4\\ -2\;x_1\,-\,x_2\,+\,2\;x_3\,-\,2\;x_4\,=\,3\\ x_1\,+\,x_2\,-\,4\;x_4\,=\,3\\ -3\;x_1\,-\,x_2\,+\,3\;x_3\,+\,5\;x_4\,=\,4 \end{array}$$

tomando como parámetro, si ello fuera necesario, las
últimas variables y despejando las primeras (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
. Expresar la solución mediante combinaciones lineales.

- 1) $\begin{pmatrix} ? \\ ? \\ ? \\ 0 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 13 \\ ? \end{pmatrix} \rangle$
- $2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 1 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 10 \\ ? \end{pmatrix} \right\rangle$
- 3) $\begin{pmatrix} ? \\ ? \\ -7 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 7 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 5 \end{pmatrix} \rangle$
- 4) $\begin{pmatrix} ? \\ ? \\ ? \\ 1 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 14 \\ ? \end{pmatrix} \right\rangle$
- 5) $\begin{pmatrix} ? \\ -5 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -9 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 8 \end{pmatrix} \right\rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	9K	5K	4K
Pienso marca 2	9K	5K	6K
Pienso marca 3	5K	3K	3K
Pienso marca 4	2K	1K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 87K 49K 47K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 2) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=5, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 3 & -3 & 3 \\ 1 & 6 & -7 & 7 \\ 1 & 1 & 0 & -1 \\ -1 & -3 & 3 & -2 \end{pmatrix} .$$

$$1) \quad \begin{pmatrix} ? & -4 & 2 & 5 \\ 2 & ? & 1 & 0 \\ 1 & -3 & ? & 4 \\ 2 & -8 & 5 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -3 & -3 & -3 \\ -3 & ? & 4 & 4 \\ -1 & 2 & ? & 4 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & -1 & 0 \\ -1 & ? & 1 & 0 \\ -1 & -1 & ? & 1 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & 1 & 4 \\ 0 & ? & 4 & 8 \\ 0 & -2 & ? & 5 \\ -1 & 1 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 2 & ? & -1 & -1 \\ 0 & 0 & ? & 0 \\ -3 & 0 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 1 & -1 \\ 1 & ? & -1 & 0 \\ 0 & 1 & ? & 3 \\ 2 & -1 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 2 & -1 \\ 0 & ? & 0 & 1 \\ 0 & 0 & ? & 0 \\ -1 & 1 & -3 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(2\ 2\ -2\ 2)$$
, $(1\ 1\ 2\ 0)$, $(-2\ 1\ 1\ 1)$, $(-1\ 1\ 2\ 0)$,

son independientes?

Ejercicio 3

Comprobar si la upla (0 -2 -2) es combinación lineal de la uplas

$$(1 \ 0 \ -2)$$
, $(-1 \ 0 \ 2)$, $(2 \ 2 \ -2)$, $(1 \ 2 \ 0)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} 3 & -2 \\ 2 & -1 \end{array}\right)^{-1} \boldsymbol{.} \left(X - \left(\begin{array}{cc} 2 & -1 \\ 1 & 0 \end{array}\right)\right) = \left(\begin{array}{cc} 1 & -2 \\ 3 & -4 \end{array}\right)$$

$$1)\quad \left(\begin{array}{ccc} -2 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{ccc} 0 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{ccc} -1 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{ccc} \star & -2 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{ccc} \star & -1 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} -3 & 2 & -3 & -2 \\ 1 & -1 & 1 & -2 \\ 1 & -1 & -2 & a \\ 2 & 0 & 1 & 0 \end{pmatrix} \text{ tenga determinante igual a 33?}$$

Encontrar la solución del sistema

$$2 x_1 - x_2 + 3 x_3 - 2 x_4 == 5$$

-10 $x_1 + 2 x_2 + 9 x_3 - 5 x_4 == -1$
-4 $x_1 + x_2 + 2 x_3 - x_4 == -2$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -18 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 11 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -2 \end{pmatrix} \rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -16 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 16 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -5 \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ -8 \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 9 \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -6 \\ 2 \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} -1 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 18 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -7 \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ 7 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -5 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 3 \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	1K	ØK	4K
Pienso marca 2	2K	1K	7K
Pienso marca 3	0K	1K	3K
Pienso marca 4	2K	1K	8K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 18K 11K 82K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 15.
- 1) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 3) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0

Ejercicio 1

$$\text{Calcular la inversa de la matriz } \left(\begin{array}{cccc} 1 & \emptyset & 1 & 1 \\ -1 & 1 & -1 & 1 \\ \emptyset & -2 & \emptyset & -3 \\ -1 & 1 & -2 & 2 \end{array} \right).$$

$$1) \quad \begin{pmatrix} ? & -7 & -2 & -5 \\ -6 & ? & 2 & 4 \\ \emptyset & \emptyset & ? & \emptyset \\ -5 & 4 & 1 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ 1 & ? & \emptyset & 0 \\ 1 & \emptyset & ? & -1 \\ 0 & 1 & \emptyset & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -5 & -2 & 1 \\ -3 & ? & -2 & 0 \\ 2 & 3 & ? & -1 \\ 2 & 2 & 1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & 0 & -2 & 0 \\ -1 & ? & 0 & 1 \\ 0 & 1 & ? & 1 \\ 0 & 0 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & 0 & -1 & -1 \\ 3 & ? & -5 & -3 \\ -1 & 1 & ? & 1 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & -1 & -1 \\ 3 & ? & -4 & 3 \\ -2 & -2 & ? & -2 \\ 6 & 5 & -7 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -1 & -1 \\ 3 & ? & 4 & 10 \\ -1 & 1 & ? & -3 \\ 1 & 0 & 3 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(1\ 2\ 1\ -2)$$
, $(1\ 2\ -1\ -1)$, $(1\ -1\ -2\ -2)$, $(2\ -1\ 0\ -2)$,

son independientes?

Ejercicio 3

Comprobar si la upla (4 -8 -9) es combinación lineal de la uplas

$$(-2\ -2\ 1)$$
, $(2\ 2\ -2)$, $(-4\ -4\ 3)$, $(1\ -1\ 2)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc}5 & -2\\-2 & 1\end{array}\right) \boldsymbol{.} X - \left(\begin{array}{cc}2 & -1\\-1 & 1\end{array}\right) = \left(\begin{array}{cc}3 & -6\\-1 & 2\end{array}\right)$$

$$1)\quad \left(\begin{array}{ccc} 1 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{ccc} -1 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{ccc} 2 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{ccc} \star & -2 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{ccc} \star & 1 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$1)$$
 -3 $2)$ -5 $3)$ -2 $4)$ 0 $5)$ 3

Encontrar la solución del sistema

$$-x_1 - 2 x_2 + 5 x_3 - 2 x_4 == 2$$

 $-x_1 + 5 x_2 - 2 x_3 + x_4 == -2$

$$6 x_1 - 9 x_2 - 9 x_3 + 3 x_4 = 0$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ -2 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -6 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

2)
$$\begin{pmatrix} ? \\ -2 \\ ? \\ ? \\ \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -10 \\ \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} -6 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -7 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -1 \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -6 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 7 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -8 \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} -1 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -6 \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	3K	4K	5K
Pienso marca 2	3K	2K	5K
Pienso marca 3	4K	6K	7K
Pienso marca 4	5K	7K	9K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 37K 52K 64K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 1 sea igual a 5.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 5 & 6 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ -3 & -5 & 0 & -2 \\ 0 & -1 & 1 & -1 \end{pmatrix} .$$

$$\begin{pmatrix} ? & -3 & 2 & 0 \\ 2 & ? & 0 & -1 \\ 0 & -2 & ? & 1 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & 0 & -5 \\ -1 & ? & 1 & 1 \\ -3 & 3 & ? & 5 \\ -2 & 3 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & 0 & -2 \\ 0 & -2 & ? & 2 \\ -1 & -3 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & 0 \\ -3 & ? & -1 & 0 \\ -1 & -1 & ? & -1 \\ 0 & 2 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

(0 0 0
$$^{-1}$$
), (2 0 0 $^{-2}$), ($^{-1}$ 1 $^{-1}$ 2),

son independientes?

Ejercicio 3

Comprobar si la upla (6 8 3) es combinación lineal de la uplas

$$(-2\ 2\ -2)$$
, $(-1\ 1\ -1)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X-\left(\begin{array}{cc}-\mathbf{1} & -\mathbf{1}\\ \mathbf{3} & 2\end{array}\right)\right)\boldsymbol{.}\left(\begin{array}{cc}\mathbf{1} & \mathbf{0}\\ \mathbf{0} & \mathbf{1}\end{array}\right)=\left(\begin{array}{cc}\mathbf{0} & 2\\ -2 & -3\end{array}\right)$$

$$1)\quad \left(\begin{array}{cc} -2 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{cc} -1 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{cc} 1 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{cc} 2 & \star \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{cc} \star & 2 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 3 & 2 & 2 & 4 \\ -2 & -1 & -1 & -2 \\ -3 & 0 & -2 & -3 \\ -1 & a & 1 & 0 \end{pmatrix}$$
 tenga determinante igual a 4?

Encontrar la solución del sistema

```
\begin{array}{l} -2\;x_1-4\;x_2-x_3-x_4=-2\\ -2\;x_1-2\;x_2+3\;x_3+2\;x_4=2\\ -2\;x_1+7\;x_3+5\;x_4=6 \end{array}
```

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

2)
$$\begin{pmatrix} ? \\ 0 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 6 \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 10 \\ 3 \end{pmatrix} \rangle$$

$$4)\quad \left(\begin{array}{c} ? \\ -9 \\ ? \\ ? \\ ? \\ \end{array}\right) + \left\langle \left(\begin{array}{c} 1 \\ ? \\ ? \\ ? \\ ? \\ \end{array}\right), \left(\begin{array}{c} ? \\ -8 \\ ? \\ ? \\ ? \\ \end{array}\right), \left(\begin{array}{c} 6 \\ ? \\ ? \\ ? \\ ? \\ \end{array}\right), \left(\begin{array}{c} ? \\ 0 \\ ? \\ ? \\ ? \\ \end{array}\right)\right\rangle$$

5)
$$\begin{pmatrix} ? \\ 1 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 3 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 12 \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	5K	8K	13K
Pienso marca 2	3K	5K	8K
Pienso marca 3	6K	9K	15K
Pienso marca 4	7K	12K	20K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 39K 61K 100K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?

Ejercicio 1

$$\begin{array}{c} \text{Calcular la inversa de la matriz} & \begin{pmatrix} 7 & 2 & 0 & 3 \\ 2 & 1 & 0 & 1 \\ 3 & 0 & 1 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix} \text{.} \\ \\ 1) & \begin{pmatrix} ? & -3 & -1 & 3 \\ 1 & ? & 4 & -7 \\ 1 & 8 & ? & -6 \\ -1 & -4 & -1 & ? \end{pmatrix} & 2) & \begin{pmatrix} ? & -3 & 1 & 1 \\ 2 & ? & -3 & -1 \\ 2 & 5 & ? & 0 \\ 1 & 3 & -2 & ? \end{pmatrix} & 3) & \begin{pmatrix} ? & -2 & -3 & -3 \\ 0 & ? & 0 & -1 \\ -5 & 2 & ? & 3 \\ 1 & 1 & -1 & ? \end{pmatrix} & 4) \\ \\ \begin{pmatrix} ? & -1 & 1 & -1 \\ -1 & ? & 1 & -1 \\ -1 & 2 & ? & 0 \\ 1 & 1 & -3 & ? \end{pmatrix} & 5) & \begin{pmatrix} ? & -1 & 0 & 0 \\ 2 & ? & -1 & 0 \\ 2 & 1 & ? & 1 \\ 2 & 0 & 0 & ? \end{pmatrix} & 6) & \begin{pmatrix} ? & -1 & 0 & 1 \\ 2 & ? & 0 & -3 \\ -4 & -3 & ? & 5 \\ -3 & -2 & 0 & ? \end{pmatrix} & 7) & \begin{pmatrix} ? & -1 & 1 & 0 \\ -5 & ? & 0 & -1 \\ -1 & 0 & ? & 0 \\ 2 & -2 & 1 & ? \end{pmatrix}$$

Ejercicio 2

```
¿Cuántas de las uplas (-4 0 -4 0), (0 -2 -2 -1), (-2 0 -2 0), (-2 -2 -4 -1), (0 2 1 -2), son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5
```

Ejercicio 3

```
Comprobar si la upla (3 -7 -9) es combinación lineal de la uplas (2 -2 0), (1 -1 -2), (-1 1 2), (2 -2 -2), (1 -1 0), (1 Si 2) No
```

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X + \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 10 & -7 \\ 7 & -5 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 2 & 1 & a & 0 \\ 0 & 0 & -2 & 1 \\ 5 & 3 & 1 & 2 \end{pmatrix} \text{ tenga determinante igual a 5?}$$

1)
$$-1$$
 2) -3 3) 1 4) 2 5) 3

Encontrar la solución del sistema

$$7 x_1 + 3 x_2 + x_3 + 2 x_4 - 3 x_5 == 2$$

$$5 x_1 + 2 x_2 + 3 x_4 == 4$$

$$2 x_1 + x_2 + x_3 - x_4 - 3 x_5 == -2$$

tomando como parámetro, si ello fuera necesario, las

últimas variables y despejando las primeras (es decir al resolver

por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$\begin{array}{ccc}
\mathbf{1} & \begin{pmatrix} ? \\ 7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -3 \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 0 \\ 2 \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ -15 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} \emptyset \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -4 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 16 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 0 \end{pmatrix} + \langle \begin{pmatrix} 2 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 11 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 15 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	21K	2K	1K	48K
harinas vegetales	7K	1K	2K	16K
harinas de pescado	10K	1K	1K	23K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 77K 33K 39K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 3 & 0 & 4 \\ 0 & -2 & 1 & -3 \\ 2 & -3 & 2 & -5 \end{pmatrix}.$$

$$1) \quad \left(\begin{array}{ccccc} ? & -2 & 1 & -1 \\ 0 & ? & 0 & 0 \\ 1 & -2 & ? & -1 \\ -2 & 5 & -4 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{cccccc} ? & -2 & 1 & 3 \\ -4 & ? & -2 & -8 \\ 1 & -1 & ? & 2 \\ 1 & -1 & 0 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{ccccccc} ? & 0 & -2 & 1 \\ 8 & ? & 8 & -4 \\ -2 & 1 & ? & 1 \\ -6 & 1 & -6 & ? \end{array}\right) \quad 4)$$

$$\begin{pmatrix} ? & -2 & 3 & 2 \\ 0 & ? & -1 & 0 \\ 0 & 2 & ? & -2 \\ 0 & -1 & 2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & -1 \\ 0 & ? & 1 & 0 \\ 0 & -2 & ? & 0 \\ 0 & -1 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & 2 & -2 \\ 0 & 0 & ? & 0 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ 1 & ? & 1 & 1 \\ 1 & 0 & ? & 1 \\ -1 & -1 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -2 \ 1 \ -1 \ 1 \ -1 \) \text{, } (\ -1 \ 0 \ 2 \ -1 \ -1 \) \text{, } (\ 2 \ -2 \ 0 \ 1 \ 2 \) \text{, } (\ 2 \ 0 \ -2 \ 1 \ 0 \) \text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (8 -4 8 8) es combinación lineal de la uplas

$$(4 -2 4 4)$$
, $(2 -1 2 2)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 2 & -1 & 0 \\ -4 & 3 & 1 \\ -3 & 2 & 1 \end{pmatrix}^{-1} \cdot X - \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ 3 & -1 & -1 \\ 0 & 0 & -3 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} \star & -2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & \emptyset & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & 2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} 0 & 0 & 2 & 1 \\ 1 & -1 & -1 & 0 \\ -2 & a & -2 & 1 \\ -2 & 0 & 3 & 0 \end{pmatrix} \text{ tenga determinante igual a 16?}$$

1)
$$-2$$
 2) -1 3) 2 4) 3 5) -4

Encontrar la solución del sistema

```
-2 x_1 - x_2 - 2 x_3 + 8 x_4 == 2

-x_1 + x_3 - 3 x_4 == 1

-5 x_1 + x_3 - x_4 == -1

-x_1 - x_2 - x_3 + 4 x_4 == 4
```

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

- 1) (???)
- $2) \quad \begin{pmatrix} ? \\ -4 \\ ? \\ ? \end{pmatrix}$
- 3) $\begin{pmatrix} ? \\ ? \\ -2 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 2 \end{pmatrix} \right\rangle$
- $4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -4 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 6 \\ ? \end{pmatrix} \rangle$
- $5) \quad \begin{pmatrix} ? \\ -4 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 5 \end{pmatrix} \right\rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	8K	1K	3K
Pienso marca 2	4K	1K	2K
Pienso marca 3	11K	1K	4K
Pienso marca 4	11K	3K	6K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=5, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 2 & -2 & 1 & 2 \\ 0 & -1 & 0 & 1 \end{pmatrix}.$

Ejercicio 2

¿Cuántas de las uplas

$$(2\ 0\ -2\ 2)$$
, $(-4\ -2\ -2\ 2)$, $(-2\ -1\ -1\ 1)$, $(-1\ 2\ 1\ -1)$,

son independientes?

Ejercicio 3

Comprobar si la upla $(-2\ 4\ -1)$ es combinación lineal de la uplas

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{1} & -\mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{array}\right) . X . \left(\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array}\right) = \left(\begin{array}{cc} \mathbf{2} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{array}\right)$$

$$1) \quad \left(\begin{array}{ccc} -2 & \star \\ \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{ccc} 0 & \star \\ \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{ccc} 2 & \star \\ \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{ccc} \star & 0 \\ \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccc} \star & -1 \\ \star & \star \end{array} \right)$$

Ejercicio 5

$$1) \quad -4 \qquad 2) \quad 0 \qquad 3) \quad 1 \qquad 4) \quad -3 \qquad 5) \quad 4$$

Encontrar la solución del sistema

$$3 x_1 - 6 x_2 + 7 x_3 + 10 x_4 == 10$$

 $-2 x_1 + x_2 - 5 x_3 - 7 x_4 == -3$
 $x_1 + 4 x_2 + 3 x_3 + 4 x_4 == -4$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 28 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 0 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -35 \\ ? \end{pmatrix} \rangle$$

$$2) \quad \begin{pmatrix} ? \\ -1 \\ ? \\ 3 \end{pmatrix}$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 26 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ 1 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 24 \end{pmatrix} \rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ 8 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -5 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 10 \\ ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 29 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ 1 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -32 \\ ? \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	3K	3K	2K
Pienso marca 2	8K	12K	6K
Pienso marca 3	14K	17K	10K
Pienso marca 4	10K	11K	7K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 98K 121K 70K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 12.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 4) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?

Ejercicio 1

Ejercicio 2

```
¿Cuántas de las uplas

(-4 0 -1 -3 0), (-2 2 0 -2 1), (2 -2 1 -1 -2),

, (-4 0 -2 0 1), (-2 -2 -1 -1 -1), (-1 0 2 -1 -1),

son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5 6) 6
```

Ejercicio 3

```
Comprobar si la upla (6\ 7\ -6\ 8) es combinación lineal de la uplas (2\ -4\ -4\ -2), (1\ -2\ -2\ -1), (-2\ 2\ 0\ -2), (-1\ 0\ -2\ -3), (-4\ 4\ 0\ -4), (-3\ 4\ 2\ -1),
```

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix} \cdot X \cdot \begin{pmatrix} -1 & 1 & 2 \\ -1 & 2 & 3 \\ -2 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 & 0 \\ 8 & -6 & 2 \\ 4 & -3 & 1 \end{pmatrix}$$

$$1) \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \begin{pmatrix} * & * & -2 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \begin{pmatrix} * & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \quad 5) \begin{pmatrix} * & * & * \\ 2 & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz $\begin{pmatrix} 0 & a & 1 & 1 \\ 0 & -1 & -1 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \end{pmatrix} \text{ tenga determinante igual a -3?}$ $1) \ 4 \ 2) \ 1 \ 3) \ 0 \ 4) \ -1 \ 5) \ 3$

Encontrar la solución del sistema

$$4 x_1 + 2 x_2 - x_3 + 3 x_4 == -1$$

$$\begin{array}{l} 2\;x_1\,-\,x_2\,+\,x_3\,-\,x_4\,=\,-2 \\ 2\;x_1\,+\,2\;x_2\,-\,x_3\,+\,4\;x_4\,=\,-1 \end{array}$$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ -7 \\ 3 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ -7 \\ 3 \end{pmatrix} \rangle$$

$$2) \quad \begin{pmatrix} 3 \\ \vdots \\ \vdots \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} \vdots \\ \vdots \\ 1 \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ -3 \\ ? \\ ? \\ \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -10 \\ 2 \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} 10 \\ ? \\ ? \\ ? \\ ? \\ -7 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -7 \end{pmatrix}, \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 10 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -4 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	4K	13K	44K	45K
harinas vegetales	2K	7K	23K	24K
harinas de pescado	11K	36K	122K	125K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 190K 100K 527K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 5.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 4) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} -1 & 5 & 0 & 2 \\ -2 & 3 & -2 & 3 \\ 0 & 3 & 2 & 0 \\ -1 & 3 & -1 & 2 \end{pmatrix}.$

$$\begin{pmatrix} ? & -2 & 1 & 6 \\ 2 & ? & -1 & -2 \\ -3 & 0 & ? & 3 \\ -6 & -1 & 3 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ 2 & ? & -1 & 1 \\ 1 & -1 & ? & 1 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ -1 & ? & 0 & 0 \\ 1 & 0 & ? & 1 \\ 4 & -3 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -2 & -1 \\ 0 & ? & -1 & -1 \\ 1 & 1 & ? & -2 \\ 0 & 1 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 0\ -2\ 1\ -1\)\text{, }\ (\ -1\ -2\ -1\ 1\)\text{, }\ (\ -1\ 2\ -2\ 1\)\text{, }\ (\ 1\ 1\ 1\ 1\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (-6 1 6) es combinación lineal de la uplas

$$(1\ 2\ 0)$$
, $(2\ -1\ -2)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} 3 & 1 \\ 2 & 1 \end{array}\right) \cdot X - \left(\begin{array}{cc} -4 & 7 \\ 5 & -9 \end{array}\right) = \left(\begin{array}{cc} 4 & -11 \\ -5 & 6 \end{array}\right)$$

$$1) \quad \left(\begin{array}{ccc} -2 & \star \\ \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{ccc} -1 & \star \\ \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{ccc} 1 & \star \\ \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{ccc} \star & -1 \\ \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccc} \star & 1 \\ \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & -2 & 0 & 0 \\ 1 & a & 0 & 1 \end{pmatrix} \text{ tenga determinante igual a 0?}$$

1) 1 2) 5 3) 4 4)
$$-2$$
 5) -3

Encontrar la solución del sistema

$$\begin{array}{l} 2\;x_1-5\;x_2+5\;x_4+2\;x_5=7\\ -x_1-2\;x_2+4\;x_3+3\;x_4+x_5=3\\ 3\;x_1-3\;x_2-4\;x_3+2\;x_4+x_5=4 \end{array}$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} 3 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 3 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 8 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 19 \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} 0 \\ ? \\ ? \\ ? \\ ? \\ \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 4 \\ \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ -1 \\ -8 \\ \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -8 \\ -8 \\ \end{pmatrix}$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 8 \\ ? \end{pmatrix} + \begin{pmatrix} -2 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -1 \\ ? \end{pmatrix}, \begin{pmatrix} 10 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -9 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

5)
$$\begin{pmatrix} ? \\ ? \\ 1 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ 5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 7 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -10 \\ ? \end{pmatrix} \rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	55K	41K	23K
Pienso marca 2	12K	9K	5K
Pienso marca 3	37K	27K	16K
Pienso marca 4	47K	37K	18K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 114K 87K 46K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 3.
- 1) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 3) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 1 \\ -5 & 1 & 0 & 2 \\ -7 & 1 & -1 & 2 \end{pmatrix}.$$

$$1) \quad \begin{pmatrix} ? & -2 & -5 & -7 \\ -1 & ? & 3 & 3 \\ 0 & -1 & ? & -2 \\ 0 & 1 & 1 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & 0 & 0 & 0 \\ 1 & ? & -1 & 0 \\ -2 & 0 & ? & -1 \\ 2 & -1 & 1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ -1 & ? & 0 & 0 \\ 0 & 1 & ? & -1 \\ 2 & 0 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & -1 & 1 \\ -1 & ? & -1 & 0 \\ 0 & 0 & ? & 1 \\ -2 & 1 & -2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & 4 \\ 1 & ? & 0 & 1 \\ 0 & 0 & ? & 0 \\ 1 & -1 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ -1 & ? & -2 & 1 \\ -1 & 4 & ? & 2 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -1 & -3 \\ 7 & ? & -5 & -11 \\ -4 & 0 & ? & 6 \\ -3 & -1 & 2 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 0\ 0\ -2\ 1\)\text{, }\ (\ 2\ -2\ 0\ 1\)\text{, }\ (\ 1\ 0\ -1\ -1\)\text{, }\ (\ 1\ 0\ 1\ -1\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (4 7 -2) es combinación lineal de la uplas

$$(\ -1 \ 2 \ -2 \)$$
 , $(\ -2 \ 2 \ -1 \)$, $(\ -1 \ 1 \ -3 \)$, $(\ 1 \ 0 \ -1 \)$, $(\ 0 \ 1 \ 1 \)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$$
 \cdot \times \cdot $\begin{pmatrix} -2 & 3 \\ -3 & 4 \end{pmatrix}$ $^{-1}$ $=$ $\begin{pmatrix} -5 & 5 \\ 3 & -3 \end{pmatrix}$

$$1)\quad \left(\begin{array}{ccc}0&\star\\\star&\star\end{array}\right) \qquad 2)\quad \left(\begin{array}{ccc}-1&\star\\\star&\star\end{array}\right) \qquad 3)\quad \left(\begin{array}{ccc}1&\star\\\star&\star\end{array}\right) \qquad 4)\quad \left(\begin{array}{ccc}2&\star\\\star&\star\end{array}\right) \qquad 5)\quad \left(\begin{array}{ccc}\star&-2\\\star&\star\end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 1 & 1 & a & 0 \\ -2 & -3 & 0 & 1 \\ 2 & 2 & 1 & -1 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$
 tenga determinante igual a 1?

Encontrar la solución del sistema

$$3 x_1 - 8 x_2 - 2 x_4 - 7 x_5 == 3$$

 $2 x_1 - 5 x_2 + 5 x_3 - 2 x_4 - 2 x_5 == 2$
 $-x_1 + 3 x_2 + 5 x_3 + 5 x_5 == -1$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$\begin{array}{cccc}
\begin{pmatrix}
? \\
? \\
? \\
6 \\
? \\
?
\end{pmatrix}
+ & \begin{pmatrix}
7 \\
? \\
? \\
? \\
? \\
?
\end{pmatrix}
& \begin{pmatrix}
? \\
? \\
-10 \\
? \\
?
\end{pmatrix}
\\
& \begin{pmatrix}
? \\
? \\
? \\
?
\end{pmatrix}$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 0 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -40 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 6 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -19 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	4K	2K	5K	7K
harinas vegetales	11K	8K	16K	16K
harinas de pescado	4K	3K	6K	6K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 64K 167K 62K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 13.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 2) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4
- 4) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 1 & 0 & -1 & -1 \\ 1 & 2 & -2 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & -1 \end{array} \right).$$

$$\begin{pmatrix} ? & 2 & -1 & 4 \\ 0 & ? & 1 & -1 \\ -1 & 1 & ? & 2 \\ -1 & 1 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ -3 & ? & 0 & 0 \\ -2 & 1 & ? & -1 \\ -3 & 1 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ -1 & ? & -1 & 0 \\ 0 & -1 & ? & 1 \\ 0 & 3 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ -1 & ? & 1 & 0 \\ 1 & -1 & ? & 0 \\ -1 & 1 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

(
$$2$$
 $\,$ -1 $\,$ -2 $\,$ 1), (0 $\,$ 0 $\,$ 0 $\,$ -2), (-1 $\,$ 1 $\,$ -1 $\,$ -2), (2 $\,$ -1 $\,$ -1 $\,$ 1),

son independientes?

$$1) \ 1 \ \ 2) \ 2 \ \ 3) \ 3 \ \ 4) \ 4$$

Ejercicio 3

Comprobar si la upla $(-1\ 4\ -5)$ es combinación lineal de la uplas

(2 2 2), (0
$$-2$$
 2), (1 1 -1), (-2 -4 0),

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{1} & -\mathbf{1} \\ -\mathbf{3} & \mathbf{4} \end{array}\right)^{-1} \boldsymbol{\cdot} \left(X + \left(\begin{array}{cc} \mathbf{1} & -\mathbf{3} \\ \mathbf{1} & -\mathbf{2} \end{array}\right)\right) = \left(\begin{array}{cc} \mathbf{6} & -\mathbf{17} \\ \mathbf{5} & -\mathbf{13} \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & a \end{pmatrix} \text{ tenga determinante igual a 1?}$$

Encontrar la solución del sistema

$$2 x_1 - x_2 + x_3 - 3 x_4 == -1$$

-3 $x_1 + x_3 - 2 x_4 == -5$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} -5 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 10 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ 0 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 5 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -2 \\ ? \end{pmatrix} \rangle$$

$$4) \quad \begin{pmatrix} ? \\ -1 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 8 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -4 \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ -10 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 14 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -2 \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	1K	ØK	2K
Pienso marca 2	4K	3K	6K
Pienso marca 3	2K	2K	1K
Pienso marca 4	3K	2K	5K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 18K 12K 27K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 7.
- 1) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 4) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0

Ejercicio 1

$$\text{Calcular la inversa de la matriz } \left(\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 2 & 1 & 1 & 1 \\ -2 & 0 & 2 & -1 \\ 1 & 0 & 0 & 1 \end{array} \right).$$

$$1) \quad \begin{pmatrix} ? & -10 & 5 & -4 \\ 0 & ? & -1 & 0 \\ -2 & -5 & ? & -2 \\ 2 & 5 & -2 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & 0 & 1 & 1 \\ -3 & ? & -2 & -3 \\ 1 & 0 & ? & 1 \\ -2 & 0 & -1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & 1 & 0 \\ -1 & ? & -2 & 0 \\ 0 & 1 & ? & 0 \\ -2 & 1 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & 1 & 0 \\ 0 & ? & 0 & 0 \\ -1 & -1 & ? & 0 \\ -1 & 0 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & 1 \\ -1 & ? & 2 & -1 \\ -1 & 0 & ? & -1 \\ -1 & -1 & 2 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ -1 & ? & 0 & 0 \\ 2 & -1 & ? & 1 \\ -2 & 2 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -1 & 1 \\ 0 & ? & 1 & 0 \\ 1 & 1 & ? & 0 \\ 1 & -2 & -2 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-3 \ -1 \ -1 \ 0 \ 0)$$
, $(2 \ 1 \ -1 \ 2 \ 1)$, $(2 \ -2 \ 2 \ -1 \ 0)$, $(2 \ 2 \ 0 \ -2 \ -1)$, $(-1 \ 1 \ -1 \ -2 \ -1)$, son independientes?

Ejercicio 3

Comprobar si la upla (0 9 0 9) es combinación lineal de la uplas

(
$$-1$$
 $\;-2$ $\;-2$ $\;2$), (0 $\;1$ 0 $\;1$), (-2 $\;-4$ $\;-4$ $\;4$),

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 1 & \emptyset & 1 \\ 2 & 4 & -1 \\ \emptyset & -1 & 1 \end{array}\right) . X \, + \, \left(\begin{array}{ccc} 1 & 1 & 1 \\ \emptyset & \emptyset & 1 \\ -1 & -2 & 1 \end{array}\right) = \left(\begin{array}{ccc} \emptyset & \emptyset & 1 \\ 1 & -3 & 4 \\ -2 & -2 & \emptyset \end{array}\right)$$

$$1) \quad \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} * & -1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} * & * & -2 \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & * & 1 \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & * & * \\ -1 & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ a & -1 & 1 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix} \text{ tenga determinante igual a 0?}$$

Encontrar la solución del sistema

$$\begin{array}{l} 2\;x_1\,+\,3\;x_2\,+\,2\;x_3\,=\,-2\\ 2\;x_1\,+\,5\;x_2\,+\,3\;x_3\,+\,4\;x_4\,=\,5\\ x_1\,+\,x_2\,+\,x_3\,-\,x_4\,=\,-1 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ 0 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} 3 \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

$$2) \quad \begin{pmatrix} ? \\ -1 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 4 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$3) \quad \left(\begin{array}{c} ? \\ -10 \\ ? \\ 2 \end{array}\right)$$

4)
$$\begin{pmatrix} ? \\ ? \\ -7 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 10 \end{pmatrix}, \begin{pmatrix} ? \\ 2 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -3 \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -1 \end{pmatrix} + \left\langle \begin{pmatrix} 0 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	9K	5K	2K
Pienso marca 2	17K	10K	4K
Pienso marca 3	3K	1K	0K
Pienso marca 4	11K	7K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 185K 110K 45K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 15.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=5
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 3) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\left(\begin{array}{cccc} -1 & 0 & -2 & 0 \\ 2 & 1 & 1 & 1 \\ 0 & -1 & 2 & -2 \\ 2 & 1 & 1 & 2 \end{array} \right).$

$$\begin{pmatrix} ? & -1 & -2 & -2 \\ 4 & ? & 2 & 0 \\ 1 & 4 & ? & 2 \\ 0 & -3 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & -1 \\ 3 & ? & -3 & -2 \\ 0 & -1 & ? & 0 \\ 0 & 2 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ 0 & ? & 2 & 0 \\ -1 & -1 & ? & 0 \\ 1 & 0 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 3 & ? & 1 & -5 \\ 2 & -1 & ? & -5 \\ 2 & 1 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-3\ 0\ 1\ 2)$$
, $(-1\ 2\ -1\ 1)$, $(2\ -2\ 0\ 1)$, $(2\ 2\ -2\ -1)$,

son independientes?

Ejercicio 3

Comprobar si la upla (-8 -3 2) es combinación lineal de la uplas

$$(0 -2 -2), (1 0 0),$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc}0&-1\\1&4\end{array}\right)^{-1}\boldsymbol{.}X-\left(\begin{array}{cc}0&1\\-1&-1\end{array}\right)=\left(\begin{array}{cc}3&-6\\0&2\end{array}\right)$$

$$1) \quad \left(\begin{array}{cc} 0 & \star \\ \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cc} 1 & \star \\ \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cc} \star & 0 \\ \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cc} \star & 2 \\ \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{cc} \star & \star \\ -2 & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} 1 & 0 & a & -1 \\ 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & -1 & 2 \end{pmatrix} \text{ tenga determinante igual a 0?}$$

1) 5 2)
$$-5$$
 3) 2 4) -3 5) -2

Encontrar la solución del sistema

$$\begin{array}{l} 2\;x_1 + 3\;x_2 - 3\;x_3 - 5\;x_4 + 3\;x_5 == -5 \\ 5\;x_1 - 4\;x_2 - 4\;x_3 + 8\;x_4 - 5\;x_5 == -4 \\ -7\;x_1 + x_2 + 7\;x_3 - 3\;x_4 + 2\;x_5 == 9 \end{array}$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} -7 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 6 \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ -1 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 24 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -47 \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 4 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 8 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -5 \\ ? \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 34 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 22 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 5 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -29 \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ 0 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 25 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 4 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -44 \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	31K	20K	55K
Pienso marca 2	11K	7K	19K
Pienso marca 3	9K	6K	16K
Pienso marca 4	23K	15K	41K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 207K 134K 365K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 4 sea igual a 1.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=5, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 5) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 2 & -1 & 2 & 1 \\ -1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}.$$

$$1) \quad \begin{pmatrix} ? & -2 & -8 & 4 \\ -1 & ? & -2 & 1 \\ 1 & 1 & ? & 0 \\ -3 & -2 & 1 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & 0 & 0 & -1 \\ 0 & ? & 1 & -1 \\ 0 & 0 & ? & 0 \\ 1 & 1 & -1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ -2 & ? & 3 & 1 \\ 0 & 0 & ? & 0 \\ 1 & -2 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & 0 & 0 \\ 0 & ? & -1 & 0 \\ 1 & -3 & ? & 0 \\ -1 & 1 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 2 & 0 \\ -1 & ? & -2 & 0 \\ 0 & -2 & ? & 0 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 3 & 0 \\ 1 & ? & 2 & 1 \\ 0 & 0 & ? & 1 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -2 & -1 & 2 \\ -3 & ? & -1 & 4 \\ 0 & 0 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 0 \ -1 \ 1 \ 1 \ 1 \) \text{, } (\ 1 \ 0 \ 0 \ 0 \ 0 \) \text{, } (\ 0 \ -2 \ -1 \ 2 \ -1 \) \text{, } (\ 2 \ -1 \ 0 \ 0 \ 1 \) \text{, } (\ -1 \ 2 \ 0 \ -1 \ 2 \) \text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla $(-4\ -7\ 4\ 3\)$ es combinación lineal de la uplas

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 1 & -3 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \cdot X - \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} -3 & 2 & 2 \\ 1 & -2 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} \star & \star & 1 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & \star & -1 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & \star & 0 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} -1 & 1 & -1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & -2 & 0 \\ a & 2 & -2 & 1 \end{pmatrix} \text{ tenga determinante igual a } -7?$$

$$1) \quad -5 \qquad 2) \quad -4 \qquad 3) \quad -1 \qquad 4) \quad 2 \qquad 5) \quad 1$$

Encontrar la solución del sistema

$$\begin{array}{l} -2\;x_1+7\;x_2-2\;x_3=0\\ 2\;x_2-x_3=-4\\ x_1-4\;x_2+x_3=5\\ x_1-x_2-x_3=7 \end{array}$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \left(\begin{array}{c} ? \\ -7 \\ ? \end{array}\right)$$

2)
$$\begin{pmatrix} ? \\ ? \\ -8 \end{pmatrix} + \left\langle \begin{pmatrix} -9 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -6 \\ ? \end{pmatrix}, \begin{pmatrix} -8 \\ ? \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ -3 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 7 \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	30K	12K	19K
Pienso marca 2	2K	0K	1K
Pienso marca 3	31K	7K	18K
Pienso marca 4	21K	4K	12K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas de pescado harinas animales harinas vegetales 250K 79K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 12.
- 1) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 3) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ -2 & 0 & -1 & 1 \end{array}\right).$

$$1) \quad \begin{pmatrix} ? & -2 & -1 & 3 \\ 0 & ? & 0 & -1 \\ 1 & -1 & ? & 2 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -2 & 0 & 4 \\ -2 & ? & 0 & 2 \\ 4 & 3 & ? & -6 \\ -5 & -4 & -1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & 0 & 0 & 0 \\ 1 & ? & 0 & 0 \\ -3 & 0 & ? & -1 \\ -1 & 0 & 1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & -2 & 3 \\ 2 & ? & 0 & 2 \\ -2 & 2 & ? & -4 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & -1 \\ -2 & ? & -2 & -3 \\ 1 & 0 & ? & 1 \\ 2 & 1 & 2 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 3 & ? & 0 & 2 \\ -1 & 0 & ? & -2 \\ 1 & 1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & 0 \\ -2 & ? & 0 & -1 \\ -1 & 1 & ? & 0 \\ -1 & 0 & -2 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -2 \ -2 \ -1 \ 0 \) \text{, } (\ -4 \ -4 \ -2 \ 0 \) \text{, } (\ -1 \ 2 \ 1 \ 2 \) \text{, } (\ 0 \ -2 \ -2 \ 1 \) \text{, } (\ -1 \ 2 \ -2 \ 0 \) \text{, }$$

son independientes?

Ejercicio 3

Comprobar si la upla $(7\ 1\ 1)$ es combinación lineal de la uplas

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} -2 & -3 \\ 5 & 7 \end{array}\right) \cdot X + \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 2 & 6 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cc} -2 & \star \\ \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cc} 1 & \star \\ \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cc} 2 & \star \\ \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cc} \star & 1 \\ \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{cc} \star & 0 \\ \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} 1 & 1 & a & 2 \\ 0 & 1 & -2 & -2 \\ 1 & 1 & 1 & -2 \\ -1 & -1 & 0 & 3 \end{pmatrix} \text{ tenga determinante igual a 9?}$$

Encontrar la solución del sistema

$$\begin{array}{l} -7\;x_1-x_2+8\;x_3-7\;x_4-9\;x_5=-6\\ x_1+4\;x_2-5\;x_3-2\;x_4-3\;x_5=0\\ x_1-5\;x_2+4\;x_3+5\;x_4+7\;x_5=2 \end{array}$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

4)
$$\begin{pmatrix} ? \\ ? \\ 3 \\ ? \\ \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 10 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 11 \\ \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -14 \\ \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ 0 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -10 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 10 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 23 \\ ? \end{pmatrix} \rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	2K	13K	7K
Pienso marca 2	2K	15K	8K
Pienso marca 3	0K	6K	4K
Pienso marca 4	1K	7K	4K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 13K 112K 63K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 4) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} 5 & 0 & 3 & -1 \\ 3 & 1 & 2 & -1 \\ 7 & 1 & 5 & -2 \\ 2 & 0 & 1 & 0 \end{pmatrix}$

$$1) \quad \left(\begin{array}{ccccc} ? & -2 & -2 & 0 \\ 1 & ? & 2 & 0 \\ -3 & -5 & ? & 1 \\ 0 & -1 & -4 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{ccccccc} ? & -1 & 0 & -1 \\ 1 & ? & 1 & -1 \\ 0 & -2 & ? & 1 \\ 1 & -2 & -1 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{cccccccc} ? & 1 & -1 & 0 \\ -1 & ? & 0 & 1 \\ -2 & -2 & ? & 1 \\ -2 & -1 & 1 & ? \end{array}\right) \quad 4)$$

$$\begin{pmatrix} ? & -1 & 1 & 1 \\ 1 & ? & -1 & -2 \\ -1 & 0 & ? & -1 \\ -2 & 0 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & 0 & -4 & -7 \\ 0 & ? & 2 & 3 \\ 0 & 0 & ? & 4 \\ -2 & -1 & 5 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & -3 & 4 \\ 5 & ? & -4 & 5 \\ -3 & 0 & ? & -3 \\ -1 & 1 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -1 & 0 \\ 0 & ? & 1 & -1 \\ -2 & 1 & ? & 1 \\ 1 & 1 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-1\ 1\ -2\ -2\ 1)$$
, $(0\ 0\ 1\ -2\ 1)$, $(-1\ 1\ 2\ -1\ 0)$, $(-2\ 2\ -4\ -4\ 2)$,

son independientes?

Ejercicio 3

Comprobar si la upla ($2\,$ $-1\,$ $-1\,$ 5) es combinación lineal de la uplas

$$(-4 \ -4 \ -4 \ 2)$$
, $(-2 \ -2 \ -2 \ 1)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X - \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{array}\right)\right). \left(\begin{array}{ccc} 0 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} -3 & 0 & 1 \\ -1 & 0 & 0 \\ -2 & 0 & 1 \end{array}\right)$$

$$1) \quad \begin{pmatrix} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 0 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} \star & -2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & 1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & \star & 1 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\left(\begin{array}{cccc} 1 & 0 & 2 & -1 \\ 2 & 1 & 5 & -1 \\ -1 & 0 & 1 & a \\ 0 & 0 & 1 & 1 \end{array} \right) \ \ \text{tenga determinante igual a 0?}$$

Encontrar la solución del sistema

$$-2 x_1 + x_2 + 2 x_4 == 1$$

 $-5 x_1 + 4 x_2 + 9 x_3 + 4 x_4 == -2$
 $5 x_1 + 6 x_2 + 5 x_3 + 10 x_4 == -2$
 $2 x_1 + 4 x_2 + 7 x_3 + 5 x_4 == -3$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -5 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 1 \end{pmatrix}, \begin{pmatrix} ? \\ -5 \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -18 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -67 \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} 0 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -69 \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -24 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -29 \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	1K	ØK	1K
Pienso marca 2	28K	12K	45K
Pienso marca 3	22K	11K	38K
Pienso marca 4	15K	7K	25K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 195K 85K 316K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 4) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} -1 & 0 & 3 & 1 \\ 2 & 1 & -1 & 0 \\ 4 & 1 & -3 & -1 \\ -2 & 0 & 3 & 1 \end{pmatrix} .$ $1) \quad \begin{pmatrix} ? & 0 & 0 & -1 \\ -2 & ? & 1 & 3 \\ 0 & -1 & ? & 1 \\ 2 & 3 & -3 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -2 & 2 & 5 \\ 1 & ? & -1 & -2 \\ -1 & 0 & ? & 1 \\ -1 & -1 & 1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & 3 & -1 \\ -1 & ? & -1 & 0 \\ 4 & -2 & ? & -1 \\ 2 & -1 & 1 & ? \end{pmatrix} \quad 4)$ $\begin{pmatrix} ? & -1 & -1 & 0 \\ -1 & ? & 8 & -2 \\ 0 & 1 & ? & 1 \\ 1 & -3 & -5 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ -2 & ? & 1 & -1 \\ 1 & -3 & ? & 0 \\ 0 & 1 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 2 \\ 0 & ? & -1 & -1 \\ 0 & 0 & ? & 0 \\ 1 & 0 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & -1 \\ -3 & ? & -1 & 2 \\ 2 & 0 & ? & -1 \\ -1 & 1 & 0 & ? \end{pmatrix}$

Ejercicio 2

¿Cuántas de las uplas

(-2 2 -2 2), (0 2 2 2), (-2 -1 2 1), (0 -2 2 0),

son independientes?

1) 1 2) 2 3) 3 4) 4

Ejercicio 3

Comprobar si la upla (4 -2 0) es combinación lineal de la uplas (-4 2 0), (-2 1 0),

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X + \begin{pmatrix} -2 & 3 \\ -1 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} -3 & -1 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 15 & 4 \\ 8 & 2 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & 1 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & 2 \\ * & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz $\left(\begin{array}{cccc} 2 & 1 & 1 & -2 \\ 1 & 1 & a & 2 \\ -4 & -2 & 1 & 5 \end{array} \right) \ \, \text{tenga determinante igual a 3?}$

Encontrar la solución del sistema

$$\begin{array}{l} -2\;x_1\,+\,3\;x_2\,+\,x_3\,+\,x_4\,+\,5\;x_5\,=\,1\\ 2\;x_1\,-\,4\;x_2\,-\,6\;x_3\,+\,8\;x_4\,-\,6\;x_5\,=\,8\\ -x_1\,+\,x_2\,-\,2\;x_3\,+\,5\;x_4\,+\,2\;x_5\,=\,5 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 0 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -7 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 14 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -1 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} -12 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -3 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 12 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} \emptyset \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -2 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 5 \\ ? \\ ? \end{pmatrix} \rangle$$

$$5) \quad \begin{pmatrix} ? \\ -7 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -8 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 12 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} \emptyset \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	2K	1K	0K
Pienso marca 2	7K	2K	2K
Pienso marca 3	4K	1K	1K
Pienso marca 4	2K	ØK	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 39K 22K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 2) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{ccccc} 3 & 2 & 1 & 2 \\ 3 & 3 & 1 & 2 \\ 0 & 2 & 0 & -1 \\ -1 & -1 & 0 & 0 \end{array}\right).$$

$$1) \quad \begin{pmatrix} ? & -5 & 0 & -4 \\ 1 & ? & 0 & 0 \\ 5 & 3 & ? & 2 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -4 & 5 & -2 \\ 1 & ? & 1 & 4 \\ 1 & -3 & ? & -2 \\ -1 & 3 & -3 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -3 & 4 & -5 \\ 0 & ? & -2 & 1 \\ 0 & 0 & ? & 0 \\ -1 & 0 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & 0 & -1 \\ -1 & ? & 0 & 0 \\ 4 & -3 & ? & 3 \\ -2 & 2 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -2 & 1 \\ 0 & ? & 0 & 0 \\ -1 & 1 & ? & 0 \\ 1 & -1 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 0 & ? & 0 & 0 \\ -1 & 1 & ? & 0 \\ -1 & -1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ 0 & ? & -2 & 0 \\ -1 & 1 & ? & 0 \\ 1 & -3 & 3 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

(
$$-2$$
 $\;-1$ $\;2$ $\;-1$), (-2 0 0 1), (2 $\;-1$ 0 $\;-1$),

son independientes?

Ejercicio 3

Comprobar si la upla (4 8 - 2) es combinación lineal de la uplas

$$(2 -2 -1), (0 -2 0),$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} 4 & 1 \\ 7 & 2 \end{array}\right) \cdot \left(X - \left(\begin{array}{cc} 1 & -2 \\ -2 & 5 \end{array}\right)\right) = \left(\begin{array}{cc} -6 & 3 \\ -10 & 4 \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} a & 2 & 1 & 1 \\ -1 & -3 & 0 & -1 \\ 0 & -3 & 1 & -1 \\ 1 & 2 & 0 & 1 \end{pmatrix} \text{ tenga determinante igual a } -3?$$

Encontrar la solución del sistema

$$3 x_1 - 3 x_2 + x_4 - 2 x_5 == -4$$
 $2 x_1 + 2 x_2 - 4 x_3 - 2 x_4 + 5 x_5 == -2$
 $-4 x_1 + 8 x_2 - 4 x_3 - 4 x_4 + 9 x_5 == 6$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ 2 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -6 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 14 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 8 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 6 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -9 \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -25 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -11 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 6 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 5 \end{pmatrix}$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -24 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -8 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 11 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 4 \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	9K	11K	3K	6K
harinas vegetales	3K	4K	1K	2K
harinas de pescado	7K	7K	1K	5K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 38K 13K 23K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 7.
- 1) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & -2 & -2 & 3 \\ 0 & 1 & 0 & -2 \\ -1 & 2 & 3 & -4 \\ 1 & -2 & -3 & 5 \end{pmatrix}.$$

$$1) \quad \begin{pmatrix} ? & 2 & 5 & 3 \\ 0 & ? & 2 & 2 \\ 1 & 0 & ? & 1 \\ 0 & 0 & 1 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -3 & -3 & -3 \\ 0 & ? & 3 & 2 \\ -1 & 0 & ? & -4 \\ 1 & -1 & 3 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -3 & -3 & -2 \\ -1 & ? & 1 & 1 \\ -1 & 1 & ? & 1 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 4)$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -1 \ -1 \ 1 \ 1 \) \text{, } (\ 0 \ 0 \ 2 \ 0 \) \text{, } (\ -1 \ -1 \ 3 \ 1 \) \text{, } (\ 0 \ -2 \ -1 \ 2 \) \text{, } (\ 1 \ -2 \ -2 \ -1 \) \text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (2 0 0) es combinación lineal de la uplas

(
$$-1$$
 0 0), (-2 0 0), (1 2 -2), (-2 -2 2), (0 2 -2),

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} -1 & -2 \\ 4 & 7 \end{array}\right) . X . \left(\begin{array}{cc} -2 & 1 \\ 1 & -1 \end{array}\right) = \left(\begin{array}{cc} -1 & 0 \\ 2 & 1 \end{array}\right)$$

$$1)\quad \left(\begin{array}{ccc} -2 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{ccc} 1 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{ccc} 2 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{ccc} \star & -2 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{ccc} \star & 0 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} -3 & 3 & -1 & 2 \\ 0 & 0 & 1 & a \\ 2 & -1 & 0 & 2 \\ 8 & -8 & 3 & 0 \end{pmatrix} \text{ tenga determinante igual a 11?}$$

$$1) \ \ 3 \ \ \ 2) \ \ 5 \ \ \ 3) \ \ -4 \ \ \ 4) \ \ 0 \ \ \ 5) \ \ -3$$

Encontrar la solución del sistema

$$-5\;x_1\;+\;4\;x_2\;+\;2\;x_3\;-\;x_4\;-\;2\;x_5\;==\;5$$

$$-4 x_1 + 5 x_2 + 5 x_3 - 5 x_4 - 9 x_5 == 9$$

$$-x_1 - x_2 - 3 x_3 + 4 x_4 + 7 x_5 = -4$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -16 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -21 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 15 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -8 \\ ? \end{pmatrix} \rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 24 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ 40 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 16 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 8 \end{pmatrix} \rangle$$

4)
$$\begin{pmatrix} 2 \\ ? \\ ? \\ ? \\ ? \\ ? \\ 38 \\ ? \end{pmatrix}$$
, $\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -25 \\ ? \end{pmatrix}$, $\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -9 \\ ? \end{pmatrix}$

$$5) \quad \begin{pmatrix} ? \\ -9 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 7 \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	3K	7K	1K	3K
harinas vegetales	4K	11K	0K	5K
harinas de pescado	2K	6K	0K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 16K 21K 12K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 6.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0

Ejercicio 1

Ejercicio 2

```
¿Cuántas de las uplas ( -4 0 0 0 ), ( -1 1 1 0 ), ( -1 -2 1 -2 ), ( -2 0 0 0 ), ( 2 0 1 0 ), son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5
```

Ejercicio 3

```
Comprobar si la upla (-9\ 5\ 2) es combinación lineal de la uplas (-2\ 3\ 1), (2\ -1\ 1), (0\ 2\ 2), (0\ 2\ 2)
```

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} -1 & -1 \\ 3 & 2 \end{pmatrix} \cdot X + \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz $\begin{pmatrix} 0&1&-1&1\\0&1&0&0\\1&0&2&-1\\a&0&1&1 \end{pmatrix} \text{ tenga determinante igual a 5?}$

1) 1 2) 3 3) 2 4) -3 5) -5

Encontrar la solución del sistema

$$-x_1 - x_2 + 4x_3 - x_4 - x_5 = 1$$

5 $x_1 + 4x_2 - 4x_3 + 3x_4 + 2x_5 = -5$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

$$\mathbf{1}) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 4 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 0 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 0 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -7 \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -3 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	10K	4K	9K	16K
harinas vegetales	3K	1K	3K	5K
harinas de pescado	4K	4K	1K	5K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 94K 29K 33K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 9.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 3) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 5) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 2 & 0 & -1 & -1 \\ 0 & 1 & -1 & 1 \\ -4 & 1 & 2 & 1 \\ 1 & 0 & -1 & 1 \end{array} \right).$$

$$1) \quad \left(\begin{array}{ccccc} ? & -5 & -1 & -4 \\ -1 & ? & 0 & -1 \\ -5 & -7 & ? & -5 \\ -1 & -1 & 0 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{cccccc} ? & -2 & 2 & 3 \\ 3 & ? & 2 & 2 \\ 4 & -3 & ? & 4 \\ 1 & -1 & 1 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{ccccccc} ? & -2 & -1 & 1 \\ 0 & ? & 0 & -1 \\ 1 & 4 & ? & -1 \\ -1 & 0 & 0 & ? \end{array}\right) \quad 4)$$

$$\begin{pmatrix} ? & -2 & -1 & 3 \\ 1 & ? & 0 & 0 \\ 1 & 0 & ? & 0 \\ 1 & -1 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & 2 & 3 \\ 1 & ? & 1 & 2 \\ 0 & 0 & ? & 0 \\ 0 & -1 & 2 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -2 & 0 \\ 1 & ? & 1 & 0 \\ -3 & 0 & ? & -2 \\ 1 & -1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 2 & -1 \\ 1 & ? & -1 & 0 \\ 0 & 1 & ? & 2 \\ 3 & 3 & -4 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-3\ -2\ 0\ 4\ 3\)$$
, $(-4\ 0\ 0\ 4\ 2\)$, $(-2\ 0\ 0\ 2\ 1\)$, $(1\ 2\ 0\ -2\ -2\)$, $(-1\ 2\ -1\ 1\ 2\)$, son independientes?

Ejercicio 3

Comprobar si la upla (-4 -3 -1 2) es combinación lineal de la uplas

$$(1 -3 1 4)$$
, $(1 2 0 -2)$, $(-1 3 -1 -4)$, $(2 4 0 -4)$, $(2 -1 1 2)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 1 & \emptyset & -1 \\ -4 & 2 & 3 \\ -1 & 1 & 1 \end{array}\right) \textbf{.} \left(X - \left(\begin{array}{ccc} 1 & \emptyset & 1 \\ \emptyset & 1 & -2 \\ \emptyset & \emptyset & 1 \end{array}\right)\right) = \left(\begin{array}{ccc} -3 & \emptyset & \emptyset \\ 9 & -3 & 6 \\ 2 & -1 & 2 \end{array}\right)$$

$$1) \quad \begin{pmatrix} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} \star & \star & 0 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & \star & 2 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & \star & \star \\ -2 & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} -1 & -1 & 2 & 1 \\ -1 & 0 & 1 & 2 \\ 1 & 2 & a & 0 \\ 0 & -1 & 2 & -2 \\ \end{pmatrix} \text{ tenga determinante igual a 8?}$$

1) 5 2) 3 3)
$$-4$$
 4) 2 5) -2

Encontrar la solución del sistema

$$\begin{array}{l} 2\;x_1\,-\,x_2\,+\,x_3\,=\,1\\ x_1\,+\,2\;x_2\,-\,x_3\,=\,0\\ 7\;x_1\,-\,5\;x_2\,+\,4\;x_3\,=\,-7\\ -2\;x_1\,-\,2\;x_2\,+\,x_3\,=\,5 \end{array}$$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} -3 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -10 \end{pmatrix}, \begin{pmatrix} -8 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -2 \end{pmatrix} \right\rangle$$

- 2) (? 16 ?
- 3) $\begin{pmatrix} ? \\ 8 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -6 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 5 \\ ? \\ ? \end{pmatrix} \right\rangle$
- 4) (?
- 5) (-8)

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	7K	15K	11K	6K
harinas vegetales	3K	6K	2K	2K
harinas de pescado	3K	7K	7K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 133K 51K 63K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 3 sea igual a 1.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 5) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{ccccc} 3 & 0 & 1 & -5 \\ -2 & 0 & -1 & 2 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & 1 & 2 \end{array}\right).$$

$$\begin{pmatrix} ? & -1 & -1 & -1 \\ 6 & ? & 3 & 4 \\ 1 & 0 & ? & 0 \\ 4 & 1 & 3 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ -1 & ? & 1 & 1 \\ 0 & 1 & ? & 4 \\ 0 & 0 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ 0 & ? & 0 & 1 \\ 0 & 0 & ? & 0 \\ 0 & 3 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 0 & ? & 0 & 0 \\ 1 & 1 & ? & -1 \\ 0 & 0 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -2 \ 0 \ -1 \ 2 \ 0 \) \text{,} \ (\ 1 \ 0 \ -1 \ -2 \ 2 \) \text{,} \ (\ 0 \ -1 \ 2 \ -2 \ 0 \) \text{,} \ (\ 2 \ 0 \ 1 \ 1 \ -2 \) \text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (-2 -2 -4 -4) es combinación lineal de la uplas

(
$$-2$$
 $\;-2$ $\;-4$ $\;-4$), (-1 $\;-1$ $\;-2$ $\;-2$),

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cccc} \mathbf{1} & \mathbf{0} & -\mathbf{1} \\ -\mathbf{2} & -\mathbf{1} & \mathbf{3} \\ -\mathbf{1} & -\mathbf{1} & \mathbf{1} \end{array}\right) \boldsymbol{.} \left(X + \left(\begin{array}{cccc} \mathbf{0} & -\mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & -\mathbf{1} \\ -\mathbf{3} & \mathbf{2} & \mathbf{2} \end{array}\right)\right) = \left(\begin{array}{cccc} \mathbf{4} & -\mathbf{4} & -\mathbf{2} \\ -\mathbf{11} & \mathbf{10} & \mathbf{8} \\ -\mathbf{4} & \mathbf{3} & \mathbf{4} \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} 0 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} \star & 0 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & 2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & \star & 1 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} -2 & 0 & 1 & -2 \\ -1 & -2 & 1 & a \\ 1 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{pmatrix} \text{ tenga determinante igual a 15?}$$

Encontrar la solución del sistema

$$2 x_2 + x_3 + x_4 == 3$$
 $-5 x_1 + 6 x_2 + 3 x_3 + 4 x_4 == 1$
 $-7 x_1 + 7 x_2 + 3 x_3 + 4 x_4 == 6$
 $-2 x_1 - 5 x_2 - 3 x_3 - 3 x_4 == -4$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} -1 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 6 \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ 3 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 5 \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ 9 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 1 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -7 \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ 5 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 2 \\ ? \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ 1 \\ \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ -4 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix}, \begin{pmatrix} ? \\ -5 \\ ? \\ ? \\ ? \\ \end{pmatrix}$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	8K	6K	10K	7K
harinas vegetales	15K	10K	17K	12K
harinas de pescado	6K	3K	5K	4K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 12K 20K 6K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 2.
- 1) Pienso 1=?, Pienso 2=5, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 1 & -1 & 0 & 1 \\ 1 & 0 & 0 & -2 \\ -1 & 2 & 2 & -1 \\ 1 & -1 & -1 & 0 \end{array} \right).$$

Ejercicio 2

¿Cuántas de las uplas

$$(-2\ 1\ -1\ 2)$$
, $(2\ -2\ 0\ 2)$, $(1\ 1\ 2\ -1)$, $(-4\ 2\ -2\ 4)$,

son independientes?

Ejercicio 3

Comprobar si la upla (0 0 0) es combinación lineal de la uplas

$$(-2 \ 1 \ -1)$$
, $(-4 \ 2 \ -2)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{3} & -\mathbf{1} \\ -\mathbf{2} & \mathbf{1} \end{array}\right) . X . \left(\begin{array}{cc} \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{array}\right) = \left(\begin{array}{cc} -\mathbf{2} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{array}\right)$$

$$1)\quad \left(\begin{array}{cc} -1 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{cc} 1 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{cc} \star & 1 \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{cc} \star & 2 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{cc} \star & \star \\ -1 & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 3 & -2 & -1 & -2 \\ -3 & 2 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & a & 0 & 1 \end{pmatrix} \text{ tenga determinante igual a 0?}$$

Encontrar la solución del sistema

$$2 x_1 - x_2 - 2 x_3 + 3 x_4 - x_5 == 5$$

 $4 x_1 + 2 x_2 + 2 x_3 - 2 x_4 + x_5 == 4$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

$$2) \quad \begin{pmatrix} 4 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 10 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -8 \\ ? \\ ? \\ ? \\ .5 \\ ? \\ .5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ .5 \\ ? \\ .5 \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} 0 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -16 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -1 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ -2 \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 19 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ -7 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -4 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 3 \\ ? \end{pmatrix}$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	3K	10K	4K
Pienso marca 2	4K	15K	6K
Pienso marca 3	5K	17K	7K
Pienso marca 4	2K	6K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 19K 65K 26K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 5.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} 2 & \emptyset & \emptyset & 1 \\ \emptyset & \emptyset & 1 & 2 \\ -1 & -1 & 1 & 1 \\ 1 & \emptyset & \emptyset & 1 \end{pmatrix}$

Ejercicio 2

¿Cuántas de las uplas

son independientes?

Ejercicio 3

Comprobar si la upla (-4 -4 6 2) es combinación lineal de la uplas

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 2 & 1 & -1 \end{array}\right) \boldsymbol{.} \left(X - \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{array}\right)\right) = \left(\begin{array}{ccc} 0 & 0 & 2 \\ -1 & -1 & -1 \\ -4 & -3 & -1 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} \star & 0 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} \star & \star & -1 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & \star & 2 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & \star & \star \\ -2 & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

1)
$$-2$$
 2) 5 3) -4 4) 4 5) -3

Encontrar la solución del sistema

$$x_1 + 2 x_3 = -4$$
 $-2 x_1 + x_2 - 4 x_3 = -1$
 $2 x_1 - 2 x_2 + 5 x_3 = 3$
 $-3 x_1 + 4 x_2 - 10 x_3 = 4$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ -6 \end{pmatrix} + \langle \begin{pmatrix} ? \\ -5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 6 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 3 \end{pmatrix}, \begin{pmatrix} ? \\ -3 \\ ? \end{pmatrix} \rangle$$

- $2) \quad \begin{pmatrix} ? \\ -9 \\ ? \end{pmatrix}$
- 3) (?) -6;
- 4) (? (-7)
- 5) $\begin{pmatrix} ? \\ 7 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 5 \end{pmatrix}, \begin{pmatrix} ? \\ 10 \\ ? \end{pmatrix} \right\rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	5K	10K	3K
Pienso marca 2	2K	5K	2K
Pienso marca 3	13K	39K	18K
Pienso marca 4	5K	15K	7K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 65K 183K 81K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 2) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=5

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} -1 & 0 & -3 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$
.

$$1) \quad \left(\begin{array}{ccccc} ? & -4 & 0 & 0 \\ 1 & ? & 2 & -1 \\ -1 & -1 & ? & 0 \\ 0 & 1 & -1 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{cccccc} ? & -4 & 1 & -1 \\ 2 & ? & 0 & -1 \\ 4 & -3 & ? & -1 \\ -3 & 4 & 0 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{cccccc} ? & 1 & 2 & 0 \\ 0 & ? & 2 & -1 \\ 0 & 0 & ? & 0 \\ 1 & 1 & -1 & ? \end{array}\right) \quad 4)$$

$$\begin{pmatrix} ? & -2 & -2 & 1 \\ 0 & ? & 1 & 0 \\ -2 & -1 & ? & 3 \\ -1 & 0 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ 0 & ? & 1 & 2 \\ 0 & -1 & ? & -2 \\ -1 & 1 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -1 & 0 \\ 0 & ? & 2 & 4 \\ 1 & 1 & ? & 2 \\ -3 & 5 & 4 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 3 \\ 0 & ? & 0 & -2 \\ -1 & 0 & ? & -1 \\ 1 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 2\ -1\ 1\ 2\ 1\)\text{, } (\ -1\ -1\ 0\ -2\ 2\)\text{, } (\ 2\ 1\ -1\ 0\ 0\)\text{, } (\ 2\ -2\ 2\ -1\ 0\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (9 -5 6 -9) es combinación lineal de la uplas (-2 -2 -2 2), (0 2 0 1), (1 1 -2 0), (2 -1 0 -2), (-1 -1 -1 1),

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X + \left(\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{array}\right)\right). \left(\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 3 & -2 & 1 \end{array}\right)^{-1} = \left(\begin{array}{ccc} -2 & 0 & 1 \\ 5 & 1 & -2 \\ -5 & -1 & 2 \end{array}\right)$$

$$1) \quad \begin{pmatrix} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 0 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & -2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & 2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} 0 & 1 & -1 & 0 \\ 1 & 2 & -2 & 2 \\ 0 & 1 & -1 & 1 \\ 2 & 1 & a & 2 \end{pmatrix} \ \mbox{tenga determinante igual a 4?}$$

$$1) \ \ -5 \ \ 2) \ \ 3 \ \ 3) \ \ -3 \ \ \ 4) \ \ -1 \ \ 5) \ \ 1$$

Encontrar la solución del sistema

$$\begin{array}{l} -x_1 - 3\; x_2 + x_4 + 5\; x_5 = 2 \\ 3\; x_1 + 2\; x_3 + 4\; x_4 - 3\; x_5 = -5 \\ x_1 - x_2 + x_3 - 5\; x_4 + 4\; x_5 = 2 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -1 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 61 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 26 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 10 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -7 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 7 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 7 \\ 7 \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} -26 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 61 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -7 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ -10 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 5 \end{pmatrix} \rangle$$

$$5) \quad \begin{pmatrix} -23 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -44 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -6 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	15K	11K	8K	11K
harinas vegetales	17K	13K	9K	12K
harinas de pescado	11K	8K	6K	8K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 70K 78K 51K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 6.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -2 & -5 & 1 & -2 \\ 1 & 5 & -1 & 3 \end{array}\right).$$

$$\begin{pmatrix} ? & -5 & 2 & 3 \\ -1 & ? & -3 & -4 \\ -1 & 10 & ? & -6 \\ 1 & -5 & 3 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & 0 & -1 & 3 \\ 0 & ? & -1 & 1 \\ -2 & 1 & ? & -1 \\ 1 & -1 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & 0 & -1 \\ 6 & ? & -2 & 0 \\ -2 & -1 & ? & 0 \\ 5 & 2 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & 0 \\ 1 & ? & 0 & 1 \\ 0 & 2 & ? & 0 \\ 1 & -2 & -2 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-1\ 0\ 0\ 1\ 2)$$
, $(0\ 2\ -1\ -1\ 0)$, $(-2\ 2\ -2\ 1\ 2)$, $(-2\ 1\ -1\ -2\ -1)$, $(-4\ 3\ -3\ -1\ 1)$, son independientes?

Ejercicio 3

Comprobar si la upla (${\sf -4}$ ${\sf -4}$ 3 ${\sf -8}$) es combinación lineal de la uplas

$$(-1 \ -1 \ 1 \ 2)$$
, $(-4 \ 4 \ -4 \ 2)$, $(-2 \ 2 \ -2 \ 1)$, $(-3 \ 3 \ -4 \ -1)$, $(1 \ -1 \ 2 \ 2)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right)^{-1} \cdot X + \left(\begin{array}{ccc} 0 & -1 & -1 \\ 1 & 2 & 3 \\ -1 & -2 & -2 \end{array}\right) = \left(\begin{array}{ccc} 1 & -3 & -2 \\ 4 & 0 & 2 \\ -2 & -1 & -1 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} 0 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & 0 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & -1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\left(\begin{array}{ccccc} 1 & 1 & 1 & a \\ -1 & 0 & 0 & 0 \\ 2 & 2 & 1 & -2 \\ 0 & 1 & 1 & -2 \end{array}\right) \ \ \text{tenga determinante igual a 1?}$$

1)
$$-4$$
 2) 5 3) -1 4) -5 5) -2

Encontrar la solución del sistema

$$\begin{array}{l} x_1-x_2-5\;x_4-x_5-10\;x_6=-8\\ 2\;x_1+9\;x_2+4\;x_3-2\;x_4+5\;x_5-5\;x_6=-3\\ -x_1-7\;x_2-3\;x_3-x_4-4\;x_5=-3\\ x_1+5\;x_2+2\;x_3-x_4+3\;x_5=-4 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -4 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -8 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -5 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ -5 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 5 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -1 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 10 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$3) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -2 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 7 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -2 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 12 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 7 \\ ? \end{pmatrix} + \langle \begin{pmatrix} -5 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 2 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ 18 \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 0 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 12 \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	3K	5K	19K	7K
harinas vegetales	7K	14K	53K	14K
harinas de pescado	8K	15K	57K	17K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 124K 328K 359K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 10.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=5, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 5) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Ejercicio 2

```
¿Cuántas de las uplas ( -2 -4 -1 -1 ), ( -4 -4 0 0 ), ( -2 -2 0 0 ), ( 0 -2 -1 -1 ), ( 0 1 1 -1 ), son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5
```

Ejercicio 3

```
Comprobar si la upla (7 - 2 \ 9) es combinación lineal de la uplas (-1 \ 3 \ 2), (-1 \ 1 \ 0), (-1 \ -1 \ -2), (-2 \ 2 \ 0), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \ -2 \ -2), (0 \
```

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X - \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & -2 \\ 0 & 2 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & 1 \\ * & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} -1 & 1 & 1 & -1 \\ 1 & 2 & 0 & 1 \\ 1 & a & 2 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \text{ tenga determinante igual a } -3?$$

Encontrar la solución del sistema

$$\begin{array}{l} -4\;x_1\,+\,6\;x_2\,+\,8\;x_3\,-\,2\;x_4\,=\,4 \\ -3\;x_1\,+\,2\;x_2\,-\,x_3\,+\,3\;x_4\,-\,x_5\,=\,-\,1 \\ 5\;x_1\,-\,5\;x_2\,-\,3\;x_3\,-\,2\;x_4\,+\,x_5\,=\,-\,1 \end{array}$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ 0 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -2 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 3 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 11 \end{pmatrix}$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -8 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -5 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 8 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 4 \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ 0 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 8 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 1 \\ ? \end{pmatrix} \rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 2 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 2 \\ ? \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	1K	0K	2K	3K
harinas vegetales	7K	7K	18K	15K
harinas de pescado	4K	5K	11K	8K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 16K 148K 91K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 2) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=4, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & -3 & 0 & 1 \end{array} \right).$$

1)
$$\begin{pmatrix} ? & -3 & -1 & 3 \\ -4 & ? & 3 & -4 \\ -6 & 8 & ? & -5 \\ -13 & 19 & 16 & ? \end{pmatrix}$$
 2) $\begin{pmatrix} ? & -3 & -2 & -2 \\ -1 & ? & 1 & 1 \\ -1 & 3 & ? & 2 \\ -1 & 3 & 1 & ? \end{pmatrix}$ 3) $\begin{pmatrix} ? & -2 & 2 & 0 \\ 1 & ? & 2 & -1 \\ 0 & -2 & ? & -1 \\ -1 & 3 & -3 & ? \end{pmatrix}$ 4)

$$\begin{pmatrix} ? & -1 & 1 & 0 \\ -3 & ? & -1 & -1 \\ -3 & 1 & ? & 0 \\ 0 & 1 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & 0 & -1 & 0 \\ -6 & ? & 13 & 3 \\ -3 & 3 & ? & 2 \\ -11 & 11 & 23 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & 1 & 0 \\ 1 & ? & -1 & 0 \\ -1 & -1 & ? & 0 \\ -1 & -2 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 1 & 1 \\ -1 & ? & -1 & 0 \\ -2 & -1 & ? & -2 \\ -1 & -1 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -1 \ \ -2 \ \ -1 \ \ -2 \ \ -1 \) \text{, } \ (\ 0 \ \ -2 \ \ 2 \ \ -2 \ \ 0 \) \text{, } \ (\ 2 \ \ 1 \ \ 1 \ \ 0 \ \ -1 \) \text{, } \ (\ 1 \ \ -1 \ \ 0 \ \ -2 \ \ -2 \) \text{, }$$

son independientes?

Ejercicio 3

Comprobar si la upla ($8\ 2\ -7\ -4$) es combinación lineal de la uplas

$$(\ -1 \ 1 \ -2 \ 2 \) \text{, } (\ 2 \ -1 \ 1 \ 0 \) \text{, } (\ 0 \ -1 \ -1 \ 1 \) \text{, } (\ -3 \ 2 \ -3 \ 2 \) \text{, } (\ -2 \ 0 \ -2 \ 1 \) \text{, } (\ 0 \ 0 \ 2 \ -2 \) \text{, }$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X-\left(\begin{array}{ccc}3 & -1 & -5\\4 & -1 & -7\\2 & 0 & -3\end{array}\right)\right).\left(\begin{array}{ccc}1 & -2 & -1\\1 & 0 & 0\\-1 & 3 & 2\end{array}\right)=\left(\begin{array}{ccc}-5 & 16 & 10\\-11 & 34 & 21\\-6 & 16 & 10\end{array}\right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\left(\begin{array}{ccccc} 1 & 1 & -2 & a \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 \end{array} \right) \ \ \text{tenga determinante igual a -8?}$$

1)
$$-2$$
 2) -1 3) 5 4) -3 5) 2

Encontrar la solución del sistema

$$-4 x_1 + 3 x_2 + 2 x_3 + x_4 == 5$$

$$-3 x_2 - 3 x_3 - x_4 - x_5 == -4$$

$$5 x_1 - 4 x_2 - 3 x_3 - 2 x_4 = -6$$

$$-x_1 + 4 x_2 + 4 x_3 + 2 x_4 + x_5 == 5$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} 7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -8 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 0 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -3 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} 0 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -2 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ -2 \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 1 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 4 \end{pmatrix}$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -10 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -7 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix}, \begin{pmatrix} ? \\ -4 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ 6 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -5 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 3 \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	10K	14K	11K	17K
harinas vegetales	13K	19K	10K	22K
harinas de pescado	7K	10K	7K	12K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 159K 190K 109K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 2 sea igual a 1.
- 1) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=4, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 4) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ -1 & -1 & -1 & 0 \\ 4 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right).$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 0\ -1\ 0\ 0\ -2\)\text{, }(\ -1\ -1\ 1\ -1\ 1\)\text{, }(\ 0\ 1\ -1\ 0\ 2\)\text{, }(\ 1\ -2\ 0\ 0\ 1\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla $(-2 -6 \ 6 \ 2)$ es combinación lineal de la uplas

$$(1 \ 0 \ 1 \ -1)$$
, $(-2 \ -2 \ 2 \ -2)$, $(-1 \ -1 \ 1 \ -1)$, $(-1 \ 0 \ 0 \ -2)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 0 & -1 & 1 \\ 1 & 2 & -2 \\ 1 & 0 & 1 \end{array}\right).X + \left(\begin{array}{ccc} 1 & 1 & 2 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right)$$

$$1) \quad \begin{pmatrix} 1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} \star & -1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & 2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & \star & 0 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 0 & 0 & -1 & -1 \\ 1 & -1 & 0 & -2 \\ 2 & 1 & 1 & a \\ -1 & 0 & 0 & 1 \end{pmatrix} \text{ tenga determinante igual a 5?}$$

Encontrar la solución del sistema

$$2 x_1 - 3 x_2 = 0$$

 $-7 x_1 + 4 x_2 - 5 x_3 = 0$
 $-x_1 + 3 x_2 + x_3 = -2$
 $-2 x_1 + 7 x_2 + 3 x_3 = -1$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ -4 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ ? \\ ? \end{pmatrix} \rangle$$

- 2) (? -12 ?
- 3) (-18 ; ?
- 4) (?
- $5) \quad \begin{pmatrix} -4 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 10 \\ ? \\ ? \end{pmatrix} \right\rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	1K	2K	6K	3K
harinas vegetales	3K	3K	10K	4K
harinas de pescado	4K	6K	19K	9K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 35K 62K 113K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 13.

- 1) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 4) Pienso 1=5, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{ccccc} 3 & 1 & -1 & 2 \\ 0 & 1 & 1 & -1 \\ -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 1 \end{array}\right).$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -1 \ \ 2 \ \ 0 \ \ -2 \ \ 0 \) \text{, } \ (\ 2 \ \ -1 \ \ -1 \ \ 0 \ \ -1 \) \text{, } \ (\ -3 \ \ 3 \ \ 1 \ \ -2 \ \ 1 \) \text{, } \ (\ -1 \ \ -2 \ \ 2 \ \ -1 \ \ -1 \) \text{, }$$

son independientes?

Ejercicio 3

Comprobar si la upla $(-7 \ -3 \ 7 \ -8 \,)$ es combinación lineal de la uplas

$$(-4\ 4\ 0\ -2)$$
, $(-2\ 2\ 0\ -1)$, $(-4\ 1\ 2\ -1)$, $(2\ 1\ -2\ 0)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 3 & -4 & -6 \\ 1 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X - \begin{pmatrix} -1 & 2 & -2 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 25 & -7 & 6 \\ 8 & -3 & 2 \\ -3 & 1 & 0 \end{pmatrix}$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} 1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} \star & -2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & 1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & \star & 0 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 0 & 1 & -1 & 0 \\ 1 & a & -1 & 1 \\ 1 & -1 & 3 & 2 \\ 1 & -2 & 1 & 1 \end{pmatrix} \text{ tenga determinante igual a 2?}$$

1)
$$-2$$
 2) 3 3) 1 4) 4 5) -3

Encontrar la solución del sistema

$$x_1 - x_2 - x_3 - 2 x_4 = 0$$

 $6 x_1 - 4 x_2 - 7 x_3 - x_4 = 3$
 $-3 x_1 + 2 x_2 + 4 x_3 - 5 x_4 = -4$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} -6 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 11 \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 0 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -3 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -5 \end{pmatrix}, \begin{pmatrix} -10 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$3) \quad \begin{pmatrix} ? \\ -3 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 14 \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} -8 \\ ? \\ ? \\ ? \\ 10 \\ ? \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	4K	9K	9K	8K
harinas vegetales	2K	2K	5K	5K
harinas de pescado	1K	1K	2K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 43K 15K 7K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 2 sea igual a 3.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} -2 & -2 & 2 & 5 \\ 1 & 2 & -1 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 \end{pmatrix}.$$

$$\begin{pmatrix} ? & -3 & -1 & -1 \\ 0 & ? & 1 & 0 \\ 1 & 1 & ? & 0 \\ 0 & 1 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -7 & 1 \\ -16 & ? & -12 & 3 \\ 12 & 0 & ? & -1 \\ 4 & -1 & 3 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -7 & 1 \\ -1 & ? & 4 & -1 \\ -3 & 0 & ? & 0 \\ 0 & 3 & 7 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & -2 & 2 \\ -4 & ? & -2 & 5 & 5 \\ 5 & -6 & ? & -7 & 2 \\ -3 & 4 & -2 & ? & 2 \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-2\ -1\ 2\ -1\ -1\)$$
, $(-2\ -1\ 1\ 2\ 2\)$, $(1\ 2\ -1\ -2\ -2\)$, $(-4\ -2\ 3\ 1\ 1\)$, $(1\ -2\ -1\ 1\ 0\)$, son independientes?

Ejercicio 3

Comprobar si la upla (7 $\,$ 4 $\,$ 4 $\,$ 4) es combinación lineal de la uplas

$$(\ -1 \ \ -1 \ \ -2 \ \ 3 \) \text{, } (\ 2 \ 1 \ 2 \ \ -1 \) \text{, } (\ -4 \ 0 \ \ -4 \ 2 \) \text{, } (\ 1 \ 0 \ 0 \ 2 \) \text{, } (\ -3 \ 1 \ \ -2 \ \ -1 \) \text{, } (\ -2 \ 1 \ \ -2 \ 1 \) \text{, }$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cccc} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{2} & \mathbf{1} & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} \end{array}\right) \boldsymbol{.X.} \left(\begin{array}{cccc} -\mathbf{1} & \mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} \\ -\mathbf{2} & \mathbf{2} & \mathbf{3} \end{array}\right) = \left(\begin{array}{cccc} -\mathbf{2} & \mathbf{1} & \mathbf{2} \\ -\mathbf{3} & \mathbf{1} & \mathbf{2} \\ \mathbf{3} & -\mathbf{2} & -\mathbf{3} \end{array}\right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & a & 1 & 2 \\ 0 & -1 & 1 & -2 \\ \end{pmatrix} \text{ tenga determinante igual a 1?}$$

1)
$$-3$$
 2) 4 3) 2 4) 0 5) -5

Encontrar la solución del sistema

$$-2 x_1 + 3 x_3 == 3$$

 $x_1 + 2 x_2 + x_3 == -3$
 $-2 x_1 + x_2 + 4 x_3 == -3$

tomando como parámetro, si ello fuera necesario, las
últimas variables y despejando las primeras (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
. Expresar la solución mediante combinaciones lineales.

- $1) \quad \left(\begin{array}{c} ? \\ ? \\ 20 \end{array}\right)$
- 2) (? ? 21
- 3) (29 ?
- $4)\quad \left(\begin{array}{c} ? \\ ? \\ 1 \end{array}\right) + \left\langle \left(\begin{array}{c} -3 \\ ? \\ ? \end{array}\right), \left(\begin{array}{c} 1 \\ ? \\ ? \end{array}\right), \left(\begin{array}{c} ? \\ 1 \\ ? \end{array}\right) \right\rangle$
- 5) $\begin{pmatrix} ? \\ ? \\ -1 \end{pmatrix} + \langle \begin{pmatrix} ? \\ 0 \\ ? \end{pmatrix}, \begin{pmatrix} 4 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 1 \\ ? \\ ? \end{pmatrix} \rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	2K	2K	1K
Pienso marca 2	7K	8K	4K
Pienso marca 3	5K	5K	3K
Pienso marca 4	5K	6K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 60K 69K 31K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 10.
- 1) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 4) Pienso 1=?, Pienso 2=5, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 3 & 1 & 1 & 0 \\ 2 & 1 & -1 & 0 \\ -2 & -1 & 2 & 0 \\ -1 & -1 & 2 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} ? & -1 & -1 & -2 \\ -2 & ? & 0 & 1 \\ 1 & 0 & ? & 0 \\ -5 & 2 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 1 & 1 \\ 1 & ? & 1 & 1 \\ 2 & -2 & ? & 3 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & 0 & -1 \\ 0 & ? & -1 & 0 \\ 0 & 0 & ? & -1 \\ -1 & 1 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & -1 \\ 1 & ? & -2 & 1 \\ -1 & 2 & ? & 0 \\ 1 & -1 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(2\ 0\ -1\ -1)$$
, $(-2\ -1\ -1\ -2)$, $(1\ -1\ -1\ -2)$, $(1\ 0\ -2\ -1)$,

son independientes?

Ejercicio 3

Comprobar si la upla (9 8 3) es combinación lineal de la uplas

$$(\ -2\ -4\ -4\)$$
 , $(\ 2\ 2\ 2\)$, $(\ 0\ 1\ -1\)$, $(\ -1\ -2\ -2\)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{1} & -\mathbf{1} \\ \mathbf{0} & \mathbf{1} \end{array}\right)^{-1} \boldsymbol{.} \left(X + \left(\begin{array}{cc} \mathbf{3} & -\mathbf{1} \\ \mathbf{4} & -\mathbf{1} \end{array}\right)\right) = \left(\begin{array}{cc} \mathbf{9} & -\mathbf{3} \\ \mathbf{5} & -\mathbf{2} \end{array}\right)$$

$$1)\quad \left(\begin{array}{cc} -2 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{cc} -1 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{cc} 0 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{cc} \star & 0 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{cc} \star & -1 \\ \star & \star \end{array}\right)$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz

Encontrar la solución del sistema

$$3 x_1 - x_2 + 4 x_3 + 2 x_4 + 3 x_5 = 5$$

 $4 x_1 - x_2 + 4 x_3 + 4 x_4 + 5 x_5 = -3$
 $-x_1 - 2 x_4 - 2 x_5 = 8$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 3 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 1 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -4 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -5 \\ ? \\ ? \\ ? \end{pmatrix}$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} ? \\ ? \\ ? \\ -7 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 10 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ -2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 2 \\ ? \\ ? \end{pmatrix}$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ 3 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -1 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -4 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	2K	2K	5K
Pienso marca 2	3K	2K	4K
Pienso marca 3	12K	13K	32K
Pienso marca 4	5K	6K	15K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 39K 43K 106K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 1 & -1 & -1 \\ -1 & -2 & 2 & 2 \\ -1 & 0 & 1 & 1 \\ 0 & -5 & 4 & 3 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} ? & 1 & 0 & 0 \\ 1 & ? & 1 & 0 \\ -1 & -3 & ? & 1 \\ 3 & 4 & -1 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -2 & 1 & 0 \\ -1 & ? & 1 & 0 \\ -2 & -1 & ? & 0 \\ 2 & 0 & -1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & 3 & -1 \\ 1 & ? & 1 & 0 \\ 0 & 0 & ? & 1 \\ 0 & 1 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & -1 & 1 \\ 0 & ? & 1 & -1 \\ 1 & -1 & ? & -1 \\ 0 & -1 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & 0 & -1 & 0 \\ 0 & ? & 0 & 0 \\ 0 & -3 & ? & 0 \\ 3 & -4 & 2 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & -1 & 1 \\ 0 & ? & 1 & 1 \\ -1 & -1 & ? & -1 \\ 1 & 1 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & -2 \\ -3 & ? & 0 & 7 \\ 3 & -3 & ? & -7 \\ -2 & 0 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

son independientes?

Ejercicio 3

Comprobar si la upla (-3 7 -3 3) es combinación lineal de la uplas

$$(2 \ -2 \ -1 \ -1) \text{,} \ (2 \ 2 \ 2 \ -1) \text{,} \ (-1 \ 1 \ 1 \ 2) \text{,} \ (-3 \ -1 \ -1 \ 3) \text{,} \ (-3 \ 3 \ 2 \ 3) \text{,} \ (-2 \ 2 \ 2 \ 4) \text{,}$$

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 1 & -3 & -2 \\ 0 & 1 & 1 \\ 2 & -7 & -4 \end{pmatrix} \cdot \begin{pmatrix} X + \begin{pmatrix} 1 & 1 & 1 \\ -1 & -2 & -2 \\ 0 & 2 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 8 & 9 & 6 \\ -2 & -2 & -2 \\ 18 & 21 & 14 \end{pmatrix}$$

$$1) \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 2) \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 3) \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 4) \begin{pmatrix} * & * & 1 \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 5) \begin{pmatrix} * & * & 2 \\ * & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 0 & 1 & -2 & 0 \\ -1 & 1 & -1 & 1 \\ -2 & 3 & -2 & 3 \\ a & 2 & 1 & 1 \end{pmatrix} tenga determinante igual a -1?$$

Encontrar la solución del sistema

$$\begin{array}{l} 5\;x_1\,+\,x_2\,+\,x_3\,-\,x_4\,-\,x_6\,=\,-\,1 \\ -6\;x_1\,-\,x_2\,-\,2\;x_3\,+\,3\;x_4\,+\,3\;x_5\,+\,4\;x_6\,=\,-5 \\ -3\;x_1\,-\,2\;x_3\,-\,3\;x_4\,+\,5\;x_5\,+\,3\;x_6\,=\,0 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$2) \quad \begin{pmatrix} -12 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -7 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -1 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$3) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 5 \end{pmatrix} + \langle \begin{pmatrix} 6 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

$$4) \quad \begin{pmatrix} -15 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -9 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 4 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ 6 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -3 \\ ? \\ ? \end{pmatrix}$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	3K	4K	3K	7K
harinas vegetales	12K	19K	14K	31K
harinas de pescado	16K	26K	19K	42K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 61K 273K 370K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 15.
- 1) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 4) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{ccccc} 5 & 7 & 4 & -1 \\ -2 & -3 & -2 & 0 \\ 3 & 5 & 3 & 0 \\ 4 & 7 & 4 & 1 \end{array}\right).$$

1)
$$\begin{pmatrix} ? & -11 & -1 & -7 \\ -7 & ? & 1 & 5 \\ -1 & 1 & ? & 1 \\ -2 & 2 & 1 & ? \end{pmatrix}$$
 2)
$$\begin{pmatrix} ? & -2 & -4 & 1 \\ 0 & ? & 2 & 0 \\ -1 & -3 & ? & -1 \\ 0 & -1 & -2 & ? \end{pmatrix}$$
 3)
$$\begin{pmatrix} ? & -3 & -1 & 4 \\ 4 & ? & 1 & -3 \\ 1 & 0 & ? & -2 \\ 12 & 4 & 1 & ? \end{pmatrix}$$
 4)

$$\begin{pmatrix} ? & -2 & -2 & 2 \\ 1 & ? & 0 & -2 \\ 1 & 0 & ? & -1 \\ 1 & -1 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & -1 & -1 \\ 0 & ? & 1 & -1 \\ 1 & 3 & ? & -2 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 2 & 0 \\ 1 & ? & 2 & 1 \\ 0 & 0 & ? & 0 \\ 0 & -3 & 4 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -3 & -3 \\ 2 & ? & 2 & 2 \\ 1 & 1 & ? & -2 \\ -1 & -1 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-2\ 2\ -2\ -1\ -1\)$$
, $(-1\ 1\ 0\ 2\ -1\)$, $(2\ 0\ -2\ -1\ 1\)$, $(0\ 2\ -1\ -1\ -1\)$, $(-2\ -2\ 2\ 2\ 0\)$, son independientes?

Ejercicio 3

Comprobar si la upla (6 -4 2 2) es combinación lineal de la uplas

$$(2 -1 1 1)$$
, $(-2 1 2 0)$, $(-2 2 3 1)$, $(0 1 1 1)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cccc} \mathbf{1} & \mathbf{0} & \mathbf{3} \\ \mathbf{0} & \mathbf{1} & \mathbf{3} \\ -\mathbf{3} & \mathbf{1} & -\mathbf{5} \end{array}\right) \boldsymbol{.} \left(X + \left(\begin{array}{cccc} \mathbf{1} & \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & -\mathbf{1} \\ -\mathbf{1} & -\mathbf{1} & \mathbf{0} \end{array}\right)\right) = \left(\begin{array}{cccc} \mathbf{1} & -\mathbf{6} & \mathbf{2} \\ -\mathbf{1} & -\mathbf{4} & -\mathbf{2} \\ -\mathbf{4} & \mathbf{12} & -\mathbf{8} \end{array}\right)$$

$$1) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} * & -2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & 0 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & * & -2 \\ * & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\left(\begin{array}{cccc} 0 & -1 & 0 & 1 \\ -1 & -1 & 0 & 1 \\ 2 & 1 & -1 & a \\ 1 & 1 & 1 & 2 \end{array} \right) \ \ \text{tenga determinante igual a 6?}$$

Encontrar la solución del sistema

$$3 x_1 - x_2 + 4 x_3 = 5$$

$$-x_1 + x_2 - x_3 == 0$$

$$x_1 - x_3 = -5$$

 $-x_1 - x_3 = -1$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver

por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

- 1) (?)
- 2) (?)
- 3) (?? 1)
- 4) $\begin{pmatrix} ? \\ ? \\ -2 \end{pmatrix} + \langle \begin{pmatrix} ? \\ 8 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 1 \\ ? \end{pmatrix} \rangle$
- 5) $\begin{pmatrix} ? \\ ? \\ -7 \end{pmatrix} + \langle \begin{pmatrix} -2 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 9 \\ ? \end{pmatrix} \rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	4K	8K	11K
Pienso marca 2	3K	1K	7K
Pienso marca 3	1K	3K	3K
Pienso marca 4	4K	7K	11K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 32K 51K 85K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 5) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 2 & 2 & -1 \\ -2 & -2 & -3 & 1 \\ -4 & -6 & -6 & 1 \\ -2 & -3 & -3 & 1 \end{pmatrix} .$$

$$1) \begin{pmatrix} ? & -6 & 2 & 3 \\ -5 & ? & -5 & -8 \\ 0 & 2 & ? & -1 \\ 2 & -3 & 3 & ? \end{pmatrix} \quad 2) \begin{pmatrix} ? & -5 & -5 & -3 \\ 3 & ? & 5 & 3 \\ 0 & 0 & ? & -1 \\ 2 & 3 & 3 & ? \end{pmatrix} \quad 3) \begin{pmatrix} ? & -4 & 3 & -1 \\ 5 & ? & -5 & 1 \\ 0 & 1 & ? & 0 \\ -1 & -2 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & 0 & 1 & -4 \\ 0 & ? & 0 & -1 \\ 2 & -1 & ? & 4 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 5) \begin{pmatrix} ? & 0 & 0 & -1 \\ -1 & ? & -1 & 2 \\ -2 & 0 & ? & 1 \\ -1 & 0 & 1 & ? \end{pmatrix} \quad 6) \begin{pmatrix} ? & 0 & 0 & 0 \\ 0 & ? & 0 & 2 \\ 0 & -1 & ? & -1 \\ -1 & -2 & 1 & ? \end{pmatrix} \quad 7) \begin{pmatrix} ? & 0 & 0 & 0 \\ 0 & ? & 1 & 0 \\ 1 & -1 & ? & 0 \\ -1 & 0 & 1 & ? \end{pmatrix}$$

Ejercicio 2

```
¿Cuántas de las uplas

( -2 -4 3 1 ), (0 1 -1 2 ), (0 -2 1 2 ), (-2 -3 3 -3 ), (-2 -2 2 -1 ),

son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5
```

Ejercicio 3

```
Comprobar si la upla (-5\ 2\ 5) es combinación lineal de la uplas (1\ 2\ -2), (2\ 0\ -2), (-1\ 2\ 0),
```

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} X + \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 10 & 6 \\ 4 & 3 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz $\begin{pmatrix} 0 & -2 & -1 & -1 \\ 1 & 2 & a & 0 \\ 1 & 1 & -2 & 1 \\ 0 & -1 & 0 & 0 \end{pmatrix} \text{ tenga determinante igual a } -7?$

Encontrar la solución del sistema

$$\begin{array}{l} -2\;x_1-3\;x_2+x_3-2\;x_4-3\;x_5=-8\\ x_1+x_2-2\;x_3+5\;x_4+2\;x_5=5\\ x_1+2\;x_2+x_3-3\;x_4+x_5=3 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} -4 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ 4 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 6 \\ ? \\ ? \end{pmatrix}$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ 0 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 5 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 8 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 1 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$3) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 4 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 5 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 10 \\ ? \\ ? \\ ? \\ -3 \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	4K	6K	1K	3K
harinas vegetales	4K	7K	1K	7K
harinas de pescado	7K	11K	2K	7K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 36K 50K 70K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 2) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 5) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 2 & -1 & -3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} .$$

$$1) \begin{pmatrix} ? & -5 & -5 & -2 \\ 2 & ? & 2 & 0 \\ -4 & -8 & ? & -1 \\ 1 & 0 & 2 & ? \end{pmatrix} \quad 2) \begin{pmatrix} ? & -2 & 3 & -2 \\ 0 & ? & -1 & 2 \\ 0 & 0 & ? & -1 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 3) \begin{pmatrix} ? & -3 & -2 & 1 \\ 1 & ? & 1 & -1 \\ 1 & -3 & ? & 0 \\ -4 & -1 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -3 & -1 & 1 \\ 0 & ? & 0 & -1 \\ -3 & 2 & ? & 0 \\ 0 & 3 & 0 & ? \end{pmatrix} \quad 5) \begin{pmatrix} ? & -1 & -2 & -2 \\ 2 & ? & -2 & 0 \\ 0 & -1 & ? & 2 \\ 1 & -3 & 0 & ? \end{pmatrix} \quad 6) \begin{pmatrix} ? & -1 & -1 & -1 \\ 4 & ? & -1 & 0 \\ 2 & 0 & ? & -1 \\ -2 & 1 & 2 & ? \end{pmatrix} \quad 7) \begin{pmatrix} ? & -1 & 0 & 1 \\ 1 & ? & -1 & -3 \\ 0 & 0 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

```
¿Cuántas de las uplas
(1 1 2 0), (2 1 0 -1), (1 2 -2 -2),
son independientes?
1) 1 2) 2 3) 3
```

Ejercicio 3

Comprobar si la upla $(5\ 5\ 1)$ es combinación lineal de la uplas $(-4\ -2\ -4)$, $(-2\ -1\ -2)$, (1) Si (1) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} -1 & -2 \\ -2 & -5 \end{pmatrix}^{-1} \cdot X \cdot \begin{pmatrix} -1 & 3 \\ -1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & -3 \\ -1 & 1 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & \theta \\ * & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz $\begin{pmatrix} a & 1 & 2 & -2 \\ 2 & 1 & 2 & -1 \\ -2 & 0 & -2 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix} \text{ tenga determinante igual a -9?}$ $1) -3 \quad 2) \quad 5 \quad 3) \quad -4 \quad 4) \quad 4 \quad 5) \quad 0$

Encontrar la solución del sistema

$$-4 x_2 - x_3 - 2 x_4 == -1$$

 $4 x_1 - 5 x_2 - 2 x_3 - 5 x_4 == -1$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ 3 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ 4 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -10 \\ ? \end{pmatrix} \rangle$$

2)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -3 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -9 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 5 \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} 7 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -9 \\ ? \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -8 \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -3 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ -5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 2 \end{pmatrix} \rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescad
Pienso marca 1	5K	14K	10K
Pienso marca 2	6K	17K	12K
Pienso marca 3	2K	7K	5K
Pienso marca 4	2K	4K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 46K 132K 94K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 13.
- 1) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=5, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -2 & -1 & -2 & 1 \end{pmatrix} .$$

$$1) \begin{pmatrix} ? & -3 & -1 & 2 \\ 2 & ? & 0 & -1 \\ 14 & 8 & ? & -5 \\ 5 & 3 & 1 & ? \end{pmatrix} \quad 2) \begin{pmatrix} ? & -2 & -1 & 0 \\ 1 & ? & 0 & 0 \\ 1 & 1 & ? & -1 \\ -4 & -1 & 3 & ? \end{pmatrix} \quad 3) \begin{pmatrix} ? & 0 & -1 & 0 \\ -2 & ? & 0 & -1 \\ 0 & 0 & ? & 0 \\ 0 & 1 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & 1 & 0 \\ -1 & 1 & ? & -1 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 5) \begin{pmatrix} ? & -1 & 1 & 1 \\ 3 & ? & -1 & -1 \\ -1 & 0 & ? & -1 \\ -3 & -1 & 1 & ? \end{pmatrix} \quad 6) \begin{pmatrix} ? & -1 & 1 & 3 \\ 3 & ? & -2 & -8 \\ 5 & 4 & ? & -12 \\ -8 & -5 & 3 & ? \end{pmatrix} \quad 7) \begin{pmatrix} ? & 0 & -1 & 0 \\ -7 & ? & 6 & 2 \\ -11 & 1 & ? & 3 \\ -10 & 1 & 8 & ? \end{pmatrix}$$

Ejercicio 2

```
¿Cuántas de las uplas
(1 1 1 -1 -1), (-2 2 0 -1 1), (0 0 -1 -1 0), (0 2 1 2 2), (0 1 -2 2 -1),
son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5
```

Ejercicio 3

```
Comprobar si la upla (8\ 5\ -2\ -3) es combinación lineal de la uplas (0\ -1\ 1\ 0), (2\ 2\ -2\ 2), (-2\ -3\ 1\ -2), (0\ -1\ -1\ 0), (1\ 1\ 1\ -1), (1\ 1\ 0)
```

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \cdot X + \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & -2 & 1 \end{pmatrix}$$

$$1) \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 2) \begin{pmatrix} * & * & -2 \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 3) \begin{pmatrix} * & * & * \\ 2 & * & * \\ * & * & * \end{pmatrix} \qquad 4) \begin{pmatrix} * & * & * \\ * & -1 & * \\ * & * & * \end{pmatrix} \qquad 5) \begin{pmatrix} * & * & * \\ * & 0 & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 0 & -2 & 1 & 1 \\ -2 & -2 & 2 & 1 \\ 1 & 0 & 0 & 0 \\ -2 & a & 1 & -1 \end{pmatrix} \text{ tenga determinante igual a 3?}$$

1)
$$-3$$
 2) 5 3) 4 4) -5 5) -1

Encontrar la solución del sistema

$$\begin{array}{c} -3\;x_1+7\;x_3-5\;x_5=1\\ -5\;x_1+10\;x_2+9\;x_3+6\;x_4-4\;x_5=6\\ -5\;x_1+5\;x_2+5\;x_4+2\;x_5=5\\ 3\;x_1+5\;x_2+2\;x_3+x_4-x_5=0 \end{array}$$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -45 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ -121 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -100 \\ ? \\ ? \end{pmatrix} \rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 7 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ -5 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ \emptyset \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

$$5) \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 22 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -124 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 57 \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	9K	1K	9K	7K
harinas vegetales	11K	1K	13K	10K
harinas de pescado	3K	0K	5K	4K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 23K 11K 11K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 3.
- 1) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 2 & 0 & 5 & 2 \\ -1 & 0 & -2 & 0 \\ 4 & 1 & 7 & 1 \\ 1 & 0 & 3 & 1 \end{pmatrix}$$
.

$$\begin{pmatrix} ? & -1 & -1 & -1 \\ 0 & ? & 0 & 1 \\ -1 & 1 & ? & 1 \\ 2 & 1 & -2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & 1 \\ 1 & ? & 0 & 0 \\ 0 & -2 & ? & 0 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ -2 & ? & -1 & 2 \\ 0 & 1 & ? & 0 \\ -3 & -1 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 1 & 0 \\ 2 & ? & 0 & -3 \\ 3 & 2 & ? & -5 \\ -1 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(111-11)$$
, $(-2-1-12)$, (2221) ,

son independientes?

Ejercicio 3

Comprobar si la upla (-6 -6 -3) es combinación lineal de la uplas

$$(20-1), (221),$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{array}\right) . X . \left(\begin{array}{cc} \mathbf{8} & \mathbf{5} \\ \mathbf{3} & \mathbf{2} \end{array}\right) = \left(\begin{array}{cc} \mathbf{5} & \mathbf{3} \\ -\mathbf{3} & -\mathbf{2} \end{array}\right)$$

$$1)\quad \left(\begin{array}{ccc} 1 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{ccc} \star & -2 \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{ccc} \star & -1 \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{ccc} \star & 1 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{ccc} \star & 2 \\ \star & \star \end{array}\right)$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz

$$\left(\begin{array}{ccccc} 1 & 1 & -1 & -2 \\ -2 & 0 & -1 & 1 \\ 1 & -2 & -1 & a \\ 4 & 1 & 1 & 0 \end{array} \right) \ \ \text{tenga determinante igual a -28?}$$

Encontrar la solución del sistema

$$\begin{array}{l} 8\;x_1\,+\,5\;x_2\,-\,x_3\,+\,4\;x_4\,==\,5\\ x_1\,+\,x_2\,+\,4\;x_3\,+\,5\;x_4\,==\,-5\\ 3\;x_1\,+\,2\;x_2\,+\,x_3\,+\,3\;x_4\,==\,0 \end{array}$$

tomando como parámetro, si ello fuera necesario, las
últimas variables y despejando las primeras (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
. Expresar la solución mediante combinaciones lineales.

- 1) (8 ? ?
- 2) $\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} 4 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 4 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$
- 3) $\begin{pmatrix} ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -12 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$
- 4) $\begin{pmatrix} ? \\ -14 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} 10 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -14 \\ ? \\ ? \end{pmatrix} \rangle$
- $5) \quad \begin{pmatrix} ? \\ ? \\ 4 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 3 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	8K	3K	2K	4K
harinas vegetales	12K	5K	3K	5K
harinas de pescado	27K	11K	7K	13K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 17K 27K 60K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 4.
- 1) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & -2 & 3 & 0 \\ 1 & -3 & 4 & 0 \\ 1 & -3 & 4 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} ? & 0 & 0 & 0 \\ 7 & ? & -3 & 0 \\ 5 & 3 & ? & 0 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ -3 & ? & 0 & -1 \\ 2 & 0 & ? & -1 \\ 0 & 0 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ -2 & ? & -5 & 4 \\ 3 & -2 & ? & -6 \\ 1 & 1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ -4 & ? & -1 & -1 \\ 5 & -5 & ? & 2 \\ 2 & -2 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-2\ 0\ -1\ 2\ 1)$$
, $(0\ -2\ -1\ -2\ 2)$, $(2\ 2\ 0\ 2\ 1)$, $(-4\ -2\ -1\ 0\ 0)$, $(-4\ 0\ -2\ 4\ 2)$, son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5

Ejercicio 3

Comprobar si la upla (-2 -9 -4 -4) es combinación lineal de la uplas

$$(\ -1\ 0\ -1\ 2\)\text{, }(\ -2\ -2\ 2\ 0\)\text{, }(\ -1\ -2\ -1\ 2\)\text{, }(\ 1\ 0\ 0\ 0\)\text{, }(\ -3\ -2\ 1\ 2\)\text{,}$$

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X-\left(\begin{array}{cccc}1&0&0\\-2&1&1\\-1&0&1\end{array}\right)\right).\left(\begin{array}{cccc}1&-2&-1\\2&-3&-2\\-2&4&3\end{array}\right)=\left(\begin{array}{cccc}-2&5&3\\1&-4&-2\\2&-4&-2\end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} \star & -1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & \emptyset & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{cccc} \star & \star & -1 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} -2 & -1 & 0 & 1 \\ -2 & -1 & 1 & 0 \\ a & 1 & -2 & 2 \\ 1 & 0 & -2 & 1 \end{pmatrix} \text{ tenga determinante igual a 3?}$$

1)
$$-3$$
 2) 5 3) -1 4) 4 5) 3

Encontrar la solución del sistema

$$x_1 - 2 x_2 - x_3 = -5$$

 $-x_1 + 6 x_2 + 2 x_3 = 5$
 $2 x_1 - x_2 - x_3 = -4$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

- $1) \quad \left(\begin{array}{c} ? \\ -4 \\ ? \end{array}\right)$
- 2) (?)
- 3) (?
- 4) $\begin{pmatrix} ? \\ -8 \\ ? \end{pmatrix} + \langle \begin{pmatrix} 8 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -4 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -8 \end{pmatrix} \rangle$
- 5) $\begin{pmatrix} ? \\ ? \\ -9 \end{pmatrix} + \left\langle \begin{pmatrix} -4 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 1 \\ ? \\ ? \end{pmatrix} \right\rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	1K	2K	1K
Pienso marca 2	5K	7K	2K
Pienso marca 3	6K	10K	3K
Pienso marca 4	0K	1K	1K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 32K 52K 18K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 11.

- 1) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & -2 & 1 & 0 \\ 3 & -5 & 3 & 0 \\ 1 & -2 & 2 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} ? & 2 & -1 & 0 \\ -3 & ? & 0 & 0 \\ -1 & 0 & ? & 0 \\ -3 & 1 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 0 & ? & 1 & 1 \\ -1 & -1 & ? & 1 \\ 3 & 1 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ 1 & -1 & 2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -1 & -1 \\ 0 & ? & 0 & -1 \\ 1 & 1 & ? & 0 \\ 2 & 3 & 4 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 1\ 0\ 0\ 0\ 1\)\text{, }\ (\ 0\ -2\ 2\ -2\ -2\)\text{, }\ (\ 1\ -1\ 0\ 0\ 2\)\text{, }\ (\ 0\ -2\ 2\ 2\ -2\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (-7 7 7 3) es combinación lineal de la uplas

$$(-2 \ -4 \ -4 \ 0)$$
, $(0 \ -2 \ 2 \ -1)$, $(2 \ -1 \ -2 \ -1)$, $(-3 \ -1 \ 0 \ 1)$, $(-1 \ -2 \ -2 \ 0)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} -1 & \emptyset & -1 \\ 3 & 2 & 2 \\ \emptyset & -1 & \emptyset \end{array}\right) \boldsymbol{.} X + \left(\begin{array}{ccc} 1 & \emptyset & -1 \\ 1 & 1 & -1 \\ \emptyset & \emptyset & 1 \end{array}\right) = \left(\begin{array}{ccc} 2 & 1 & -2 \\ -4 & -4 & \emptyset \\ 1 & 1 & 2 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{ccccc} 0 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{ccccc} \star & -2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{ccccc} \star & -1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & 2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 2 & 2 & 0 & 1 \\ a & 1 & 1 & -1 \\ 1 & -1 & 0 & 0 \\ -2 & -2 & 1 & -2 \end{pmatrix} \text{ tenga determinante igual a 1?}$$

Encontrar la solución del sistema

$$x_1 - 9 \ x_2 + 28 \ x_3 + 31 \ x_4 == -5$$
 $4 \ x_1 - x_2 + 5 \ x_3 + 4 \ x_4 == -1$
 $-3 \ x_1 - x_2 + x_3 + 3 \ x_4 == 1$
 $-x_1 - 5 \ x_2 + 15 \ x_3 + 17 \ x_4 == -3$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

- . Expresar la solución mediante combinaciones lineales.
- $1) \quad \begin{pmatrix} ? \\ ? \\ -2 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -24 \\ ? \\ ? \end{pmatrix} \right\rangle$
- $2) \quad \begin{pmatrix} ? \\ 18 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -22 \\ ? \\ ? \end{pmatrix} \right\rangle$
- 3) (? ? ?
- $4) \quad \begin{pmatrix} ? \\ ? \\ 0 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 1 \\ ? \end{pmatrix} \right\rangle$
- 5) (? -4

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	4K	1K	5K	6K
harinas vegetales	11K	4K	14K	15K
harinas de pescado	7K	2K	9K	10K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 43K 121K 76K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 1 sea igual a 0.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=5, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} -2 & 4 & 7 & -4 \\ -5 & 4 & 12 & -6 \\ -2 & -1 & 3 & -1 \\ 1 & 0 & -2 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} ? & -2 & 3 & -4 \\ 2 & ? & 2 & -2 \\ 5 & -3 & ? & -5 \\ -3 & 2 & -2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -6 & 4 \\ 1 & ? & -3 & 2 \\ -5 & 1 & ? & -2 \\ 0 & -2 & 2 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -2 & -3 \\ -1 & ? & 0 & 5 \\ -1 & 0 & ? & 1 \\ -1 & 0 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & -2 & -2 \\ 0 & ? & 0 & 1 \\ 0 & 2 & ? & 1 \\ 0 & 0 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(1 -2 2 -1 -1)$$
, $(2 1 2 0 1)$, $(-1 -2 -1 -1 1)$, $(1 -1 1 -1 2)$, $(1 0 0 -2 0)$, $(2 0 -1 -2 1)$,

son independientes?

Ejercicio 3

Comprobar si la upla (-4 -2 -2 3) es combinación lineal de la uplas

$$(-1 \ -1 \ 2 \ 2)$$
, $(1 \ 2 \ 2 \ 0)$, $(1 \ -2 \ -2 \ 0)$, $(2 \ -2 \ 2 \ 2)$,

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} \mathbf{1} & \mathbf{1} & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} & \mathbf{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{array}\right) \boldsymbol{.} \left(X - \left(\begin{array}{ccc} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{2} & \mathbf{3} & \mathbf{3} \\ \mathbf{4} & \mathbf{6} & \mathbf{7} \end{array}\right) \right) = \left(\begin{array}{ccc} -\mathbf{3} & -\mathbf{6} & -\mathbf{4} \\ -\mathbf{9} & -\mathbf{12} & -\mathbf{12} \\ -\mathbf{5} & -\mathbf{7} & -\mathbf{6} \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{ccccc} \star & -2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{ccccc} \star & -1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{ccccc} \star & 1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & \star & -2 \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} 3 & 2 & 7 & 1 \\ 1 & a & -1 & 2 \\ 0 & 1 & 2 & 1 \\ 2 & -1 & 3 & 0 \end{pmatrix}$$
 tenga determinante igual a 28?

Encontrar la solución del sistema

$$-x_1 - 5 x_2 - 2 x_3 == 2$$

 $9 x_1 + 25 x_2 + 15 x_3 == -5$
 $-2 x_1 - 9 x_2 - 4 x_3 == 5$
 $3 x_1 + 8 x_2 + 5 x_3 == -2$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ 6 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ 6 \\ ? \end{pmatrix} \rangle$$

$$2)\quad \left(\begin{array}{c} ? \\ -3 \\ ? \end{array}\right) + \left\langle \left(\begin{array}{c} 9 \\ ? \\ ? \end{array}\right), \left(\begin{array}{c} ? \\ ? \\ -9 \end{array}\right), \left(\begin{array}{c} ? \\ -10 \\ ? \end{array}\right), \left(\begin{array}{c} 3 \\ ? \\ ? \end{array}\right) \right\rangle$$

- 3) (15)
- 4) (?)
- 5) (14)

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	9K	8K	3K
Pienso marca 2	5K	6K	2K
Pienso marca 3	6K	5K	2K
Pienso marca 4	8K	4K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 62K 52K 20K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 4) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1

Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 3 & -1 & 4 & -1 \\ -2 & 0 & -2 & 1 \end{pmatrix} .$ $1) \quad \begin{pmatrix} ? & -1 & -1 & -1 \\ -1 & ? & 0 & 0 \\ -2 & 1 & ? & 1 \\ 2 & 0 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -2 & -2 & 1 \\ -1 & ? & -1 & 1 \\ 0 & 1 & ? & 0 \\ -1 & -2 & 0 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & 0 & 0 \\ 0 & ? & 2 & 0 \\ -1 & 1 & ? & 0 \\ 0 & 3 & 6 & ? \end{pmatrix} \quad 4)$ $\begin{pmatrix} ? & -2 & 1 & -2 \\ -2 & 1 & ? & 1 \\ 1 & 0 & ? & -1 \\ -4 & 1 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -6 & 8 \\ 0 & ? & 0 & -1 \\ -2 & 1 & ? & -6 \\ 1 & 0 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 2 & -2 \\ 1 & ? & 0 & -2 \\ -1 & 1 & ? & 1 \\ 0 & 0 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -3 & -1 \\ 1 & ? & -1 & 0 \\ -2 & -2 & ? & 1 \\ -4 & -3 & 5 & ? \end{pmatrix}$

Ejercicio 2

¿Cuántas de las uplas (-2 2 4 -4), (0 2 2 -1), (0 -1 1 -1), (0 -2 0 -2), (-1 1 2 -2), son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5

Ejercicio 3

Comprobar si la upla $(-8\ 0\ -2\)$ es combinación lineal de la uplas $(1\ 2\ -2\)$, $(-1\ -1\ -1\)$, $(-2\ -2\ -2\)$, $(-1\ 0\ 4\)$, $(0\ 2\ 2\)$, (

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 5 & -8 \\ -3 & 5 \end{pmatrix} \cdot X - \begin{pmatrix} -3 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & -7 \\ 2 & 4 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} -1 & 2 & a & 1 \\ -3 & -3 & 1 & 2 \\ 2 & 2 & -1 & -1 \\ 0 & 1 & 2 & -1 \end{pmatrix} \text{ tenga determinante igual a } -5?$$

Encontrar la solución del sistema

$$-2 x_1 + 3 x_2 + 6 x_3 + x_4 == 9$$

 $5 x_1 - 8 x_2 - 4 x_3 - 3 x_4 == -5$
 $-3 x_1 + 5 x_2 - 2 x_3 + 2 x_4 == -4$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ -4 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 8 \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 22 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -1 \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ -32 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 21 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 0 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} -7 \\ ? \\ ? \\ ? \\ -10 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -10 \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ -32 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 38 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 2 \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	7K	2K	12K
Pienso marca 2	6K	3K	4K
Pienso marca 3	10K	3K	17K
Pienso marca 4	4K	1K	8K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 46K 14K 76K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 2) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 5) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\left(\begin{array}{ccccc} -2 & -6 & 4 & 1 \\ 2 & 11 & -6 & -2 \\ -1 & -1 & 1 & 0 \\ 1 & 2 & -2 & 0 \end{array} \right).$

1)
$$\begin{pmatrix} ? & -5 & 3 & 7 \\ 0 & ? & -1 & -2 \\ 0 & -3 & ? & 4 \\ 0 & 0 & 0 & ? \end{pmatrix}$$
 2) $\begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & 0 & 0 \\ 1 & 0 & ? & -1 \\ 0 & 1 & -1 & ? \end{pmatrix}$ 3) $\begin{pmatrix} ? & -1 & 1 & 0 \\ -3 & ? & -1 & 0 \\ 2 & -2 & ? & 1 \\ 6 & -4 & 2 & ? \end{pmatrix}$ 4)

$$\begin{pmatrix} ? & 0 & -2 & -1 \\ 2 & ? & -2 & 0 \\ 2 & 1 & ? & -1 \\ 5 & 2 & -4 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 2 & 0 \\ -2 & ? & -2 & 0 \\ -1 & 1 & ? & 0 \\ 1 & 1 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 2 & 1 \\ 0 & ? & -1 & 0 \\ -2 & 1 & ? & 1 \\ -1 & 2 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -3 & -3 \\ -1 & ? & 2 & 0 \\ 2 & 1 & ? & -3 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-1 \ -4 \ -1 \ 4 \ -2)$$
, $(1 \ 2 \ 1 \ -2 \ 2)$, $(0 \ -4 \ 1 \ 1 \ 2)$, $(0 \ -2 \ 1 \ -1 \ 2)$, $(0 \ -2 \ 0 \ 2 \ 0)$, $(-1 \ -4 \ 0 \ 1 \ 0)$,

son independientes?

Ejercicio 3

Comprobar si la upla (0 8 0 -8) es combinación lineal de la uplas

$$(0 -2 0 2), (0 -4 0 4),$$

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 3 & -1 & 1 \\ -2 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right).X. \left(\begin{array}{ccc} 3 & -2 & 1 \\ -2 & 2 & -1 \\ -4 & 3 & -1 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 4 & 8 & -2 \\ -3 & -5 & 1 \\ 2 & -1 & 2 \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 1 & 2 & a & 1 \\ -1 & 1 & 2 & -1 \\ 2 & -1 & -1 & 2 \\ 2 & -2 & 1 & 3 \end{pmatrix}$$
 tenga determinante igual a 10?

Encontrar la solución del sistema

$$12 x_1 - 5 x_2 - 2 x_3 = 3$$

 $-43 x_1 + 18 x_2 + 8 x_3 = -4$
 $-12 x_1 + 5 x_2 + 3 x_3 = -1$

tomando como parámetro, si ello fuera necesario, las
últimas variables y despejando las primeras (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ 1 \\ ? \end{pmatrix} + \langle \begin{pmatrix} -10 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 5 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -9 \end{pmatrix} \rangle$$

- 2) (?)
- 3) $\begin{pmatrix} 26 \\ ? \\ ? \end{pmatrix}$
- $4) \quad \begin{pmatrix} 10 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -8 \end{pmatrix} \right\rangle$
- 5) (25)

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	34K	19K	17K
Pienso marca 2	16K	9K	8K
Pienso marca 3	7K	4K	4K
Pienso marca 4	19K	11K	10K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 103K 59K 54K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 7.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 5) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\left(\begin{array}{cccc} 0 & 1 & 0 & -3 \\ 0 & 1 & 0 & -2 \\ -1 & 0 & 1 & -3 \\ 1 & 2 & 0 & -1 \end{array}\right).$

$$1) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 1 & ? & 0 & 0 \\ 1 & -2 & ? & -1 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ -1 & ? & 0 & 1 \\ -2 & 0 & ? & 2 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -5 & 0 & 1 \\ -2 & ? & 0 & 0 \\ 0 & -2 & ? & 1 \\ -1 & 1 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & 2 & 1 \\ 0 & ? & 0 & 0 \\ 3 & -3 & ? & 2 \\ 1 & -1 & 2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & 0 & -1 & 0 \\ -3 & ? & 1 & -1 \\ -1 & -2 & ? & 0 \\ 4 & 1 & -1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & -1 & 0 \\ 2 & ? & -2 & 3 \\ -3 & 2 & ? & -5 \\ -4 & 2 & 5 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -1 & 1 \\ 0 & ? & -2 & 0 \\ -1 & 0 & ? & 0 \\ -1 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-2\ 2\ -2\ 1)$$
, $(0\ 2\ -2\ -2)$, $(-2\ 1\ 0\ 2)$, $(-4\ 2\ 0\ 4)$,

son independientes?

Ejercicio 3

Comprobar si la upla (-8 -6 -8) es combinación lineal de la uplas

$$(2 -2 -1)$$
, $(-1 2 -1)$, $(-2 -1 1)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} 5 & 2 \\ 2 & 1 \end{array}\right) \boldsymbol{.} \left(X - \left(\begin{array}{cc} -4 & 9 \\ 3 & -7 \end{array}\right)\right) = \left(\begin{array}{cc} 12 & -29 \\ 4 & -10 \end{array}\right)$$

$$1)\quad \left(\begin{array}{ccc} -1 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{ccc} 0 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{ccc} \star & -2 \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{ccc} \star & -1 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{ccc} \star & 1 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 0 & -2 & 1 & 1 \\ 1 & 2 & 1 & 0 \\ 2 & -1 & 0 & 0 \\ a & -1 & 1 & 1 \end{pmatrix} \text{ tenga determinante igual a } -5?$$

1) 3 2)
$$-3$$
 3) 1 4) 4 5) -2

Encontrar la solución del sistema

$$\begin{array}{l} 6\;x_1-4\;x_2+6\;x_3+x_4-2\;x_5==10 \\ -4\;x_1+3\;x_2-5\;x_3-4\;x_4+9\;x_5==-5 \\ -2\;x_1+x_2-x_3+3\;x_4-7\;x_5==-5 \end{array}$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

$$\begin{array}{ccc}
1 & \begin{pmatrix} ? \\ ? \\ ? \\ -9 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 2 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 35 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -46 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 13 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -44 \\ ? \end{pmatrix} \right\rangle$$

$$\begin{array}{c} 3 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{array} + \left\langle \begin{array}{c} ? \\ ? \\ ? \\ -49 \\ ? \end{array} \right|, \left(\begin{array}{c} ? \\ ? \\ ? \\ ? \\ 10 \end{array} \right), \left(\begin{array}{c} ? \\ ? \\ ? \\ -41 \\ ? \end{array} \right)$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 77 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ -48 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 32 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -20 \end{pmatrix} \rangle$$

$$5) \quad \begin{pmatrix} 4 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 7 \end{pmatrix}, \begin{pmatrix} ? \\ -2 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right)$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	7K	4K	2K
Pienso marca 2	13K	8K	5K
Pienso marca 3	12K	8K	6K
Pienso marca 4	5K	3K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 57K 23K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=5
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 3 & -1 & 1 & 3 \\ -5 & 2 & -2 & -5 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}.$$

$$\begin{pmatrix} ? & -2 & -3 & -1 \\ 2 & ? & 3 & 0 \\ 1 & 0 & ? & 0 \\ 3 & 1 & 4 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ -1 & ? & 0 & 0 \\ 1 & 1 & ? & 0 \\ -4 & -2 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ 1 & ? & 0 & 0 \\ 1 & 1 & ? & 0 \\ -2 & -1 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 2 & -3 & 2 \\ -1 & ? & 0 & 2 \\ -1 & -1 & ? & -4 \\ -1 & -1 & 2 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 1\ 2\ 1\ 2\ -1\)\text{, } (\ -1\ -2\ 0\ 1\ 0\)\text{, } (\ -3\ -4\ 2\ 2\ 1\)\text{, } (\ -2\ -2\ 2\ 1\ 1\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (4 $\,$ -7 $\,$ 4 $\,$ -4) es combinación lineal de la uplas

$$(-1 -2 0 1), (-2 -4 0 2),$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cccc} 4 & -2 & -1 \\ -2 & 1 & 1 \\ 3 & -2 & 0 \end{array}\right) . X - \left(\begin{array}{cccc} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right) = \left(\begin{array}{cccc} -2 & -4 & -1 \\ 2 & 1 & 0 \\ 0 & -3 & -3 \end{array}\right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & -2 & 1 \\ 1 & 0 & -1 & -1 \\ 2 & 1 & a & 2 \end{pmatrix} \text{ tenga determinante igual a } -7?$$

$$1) \quad -5 \qquad 2) \quad -3 \qquad 3) \quad 3 \qquad 4) \quad -2 \qquad 5) \quad 2$$

Encontrar la solución del sistema

$$\begin{array}{c} -5\;x_1 + 3\;x_2 + 4\;x_3 = -5 \\ -12\;x_1 + 7\;x_2 + 10\;x_3 = -3 \\ -6\;x_1 + 4\;x_2 + 6\;x_3 = 8 \\ 11\;x_1 - 6\;x_2 - 9\;x_3 = 0 \end{array}$$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

- 1) (? ? 16)
- 2) (?)
- 3) (? -15 ?
- 4) $\begin{pmatrix} -7 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ 8 \\ ? \end{pmatrix} \rangle$
- 5) $\begin{pmatrix} ? \\ 10 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ 5 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 10 \end{pmatrix}, \begin{pmatrix} ? \\ 2 \\ ? \end{pmatrix}, \begin{pmatrix} 6 \\ ? \\ ? \end{pmatrix} \rangle$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	12K	10K	9K	4K
harinas vegetales	1K	2K	1K	0K
harinas de pescado	28K	18K	20K	11K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 71K 9K 152K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.

- 1) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 3 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 0\ 1\ 1\ 0\ 0\)\text{, }\ (\ 1\ -2\ 1\ -1\ -2\)\text{, }\ (\ 0\ 2\ -1\ 1\ 2\)\text{, }\ (\ 0\ 2\ 1\ -1\ 0\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla $(-1 \ -3 \ -5 \ -1)$ es combinación lineal de la uplas

$$(0\ 0\ -3\ 1)$$
, $(0\ 1\ -2\ 1)$, $(0\ 1\ 1\ 0)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 3 & 1 & 0 \\ 3 & 0 & -1 \\ 2 & 1 & 0 \end{array}\right)^{-1} \boldsymbol{.} \, X \, + \, \left(\begin{array}{ccc} 1 & -1 & -1 \\ 1 & 0 & -1 \\ 0 & 2 & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 1 & -4 \\ -1 & 3 & 3 \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 2 & 2 & 1 & 0 \\ -2 & -1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ a & 1 & 1 & 2 \end{pmatrix} \text{ tenga determinante igual a 2?}$$

Encontrar la solución del sistema

$$-2 x_1 + 3 x_2 + x_3 = -3$$

 $-x_1 + 4 x_2 + 5 x_3 = 3$
 $-7 x_1 + 8 x_2 - 2 x_3 = 9$
 $-x_2 - 2 x_3 = 3$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

3)
$$\begin{pmatrix} 0 \\ \vdots \\ 2 \end{pmatrix} + \langle \begin{pmatrix} 8 \\ \vdots \\ 2 \end{pmatrix} \rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ 1 \end{pmatrix} + \left\langle \begin{pmatrix} -10 \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	11K	16K	16K	2K
harinas vegetales	2K	3K	3K	0K
harinas de pescado	6K	9K	9K	1K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas vegetales harinas de pescado harinas animales

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 3 sea igual a 1.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 4) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} 1 & 0 & 3 & 0 \\ -2 & 1 & -2 & 0 \\ -2 & 1 & -1 & 0 \\ -3 & 0 & -3 & 1 \end{pmatrix}.$

$$\begin{pmatrix} ? & -1 & -2 & -1 \\ 0 & ? & 1 & 1 \\ 0 & 0 & ? & 0 \\ 0 & -1 & 2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 3 & ? & 5 & 12 \\ -3 & -3 & ? & -14 \\ 2 & 2 & 4 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ -1 & ? & 0 & -2 \\ -2 & 1 & ? & -2 \\ 5 & -2 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & 2 \\ -1 & ? & -1 & -1 \\ -1 & -1 & ? & 0 \\ 0 & -1 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-1 \ -2 \ 1 \ 1 \ 0)$$
, $(-2 \ 2 \ -1 \ 0 \ -1)$, $(-4 \ 1 \ 1 \ 1 \ 1)$, $(2 \ 1 \ -2 \ -1 \ -2)$, $(0 \ 2 \ 2 \ 0 \ 1)$, $(-4 \ 4 \ -2 \ 0 \ -2)$,

son independientes?

Ejercicio 3

Comprobar si la upla (1 8 8 -3) es combinación lineal de la uplas

$$(\ -3 \ 4 \ -2 \ 0 \) \text{,} \ (\ -2 \ 2 \ -4 \ -4 \) \text{,} \ (\ -2 \ 2 \ 0 \ 2 \) \text{,} \ (\ -1 \ 1 \ -2 \ -2 \) \text{,} \ (\ 1 \ -1 \ 1 \ 0 \) \text{,} \ (\ -1 \ 2 \ -2 \ -2 \) \text{,}$$

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cccc} {\bf 1} & {\bf 0} & {\bf -1} \\ {\bf -1} & {\bf 1} & {\bf 1} \\ {\bf 1} & {\bf 1} & {\bf 0} \end{array}\right) \boldsymbol{.} \left(X - \left(\begin{array}{cccc} 3 & {\bf 0} & {\bf -2} \\ {\bf -3} & {\bf 1} & {\bf 1} \\ {\bf -4} & {\bf 1} & {\bf 2} \end{array}\right) \right) = \left(\begin{array}{cccc} -7 & {\bf 1} & {\bf 5} \\ {\bf 10} & {\bf -2} & {\bf -6} \\ {\bf 0} & {\bf 0} & {\bf 2} \end{array}\right)$$

$$1) \quad \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} * & 0 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & * & 2 \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & * & * \\ 2 & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 2 & -1 & 2 \\ -1 & 0 & 0 & -1 \\ 1 & 0 & 0 & a \end{pmatrix} \text{ tenga determinante igual a 1?}$$

Encontrar la solución del sistema

$$2 x_1 - x_2 - 3 x_3 + 2 x_4 == -5$$

 $3 x_1 - x_2 - 3 x_3 - 5 x_4 == 5$

$$x_1 \,+\, x_3 \,==\, -1$$

$$-7 x_1 + 2 x_2 + 4 x_3 + 3 x_4 == 2$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver

por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$2) \quad \begin{pmatrix} 13 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 38 \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$3) \quad \begin{pmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ 3 \end{pmatrix}$$

4)
$$\begin{pmatrix} ? \\ 61 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} 10 \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

$$5) \quad \begin{pmatrix} 10 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -7 \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	1K	2K	4K
Pienso marca 2	2K	3K	6K
Pienso marca 3	3K	3K	8K
Pienso marca 4	2K	2K	5K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 20K 22K 55K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 9.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 2) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -4 & 4 & 5 & 1 \\ -3 & 3 & 4 & 1 \\ -1 & 2 & 2 & 1 \end{pmatrix}.$$

1)
$$\begin{pmatrix} ? & -2 & -2 & 3 \\ 1 & ? & 1 & -1 \\ 0 & 4 & ? & -3 \\ 0 & 3 & 1 & ? \end{pmatrix}$$
 2)
$$\begin{pmatrix} ? & -1 & 0 & 1 \\ 1 & ? & 1 & 2 \\ -1 & 5 & ? & 1 \\ 0 & 2 & 1 & ? \end{pmatrix}$$
 3)
$$\begin{pmatrix} ? & -1 & 0 & 2 \\ 0 & ? & 1 & -1 \\ 0 & -2 & ? & 3 \\ -1 & 0 & -1 & ? \end{pmatrix}$$
 4)

$$\begin{pmatrix} ? & 0 & 0 & 0 \\ 0 & ? & -3 & 1 \\ 1 & -1 & ? & -1 \\ -1 & -2 & 2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & 0 & 0 & -1 \\ -1 & ? & 1 & 1 \\ -1 & -2 & ? & 1 \\ 2 & -1 & -2 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & 0 & -1 \\ 1 & ? & 1 & -1 \\ 1 & -1 & ? & 1 \\ 0 & -1 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & 0 \\ -1 & ? & -3 & -1 \\ 0 & 0 & ? & 0 \\ 1 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -2\ 1\ 0\ 2\ 1\)\text{, }(\ 0\ 1\ 1\ 2\ 1\)\text{, }(\ 1\ -2\ 2\ -1\ 0\)\text{, }(\ 0\ 2\ 1\ 2\ 2\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (8 9 -2 2) es combinación lineal de la uplas

$$(\ 2\ 0\ 4\ 2\)\text{, }(\ 1\ 0\ 2\ 1\)\text{, }(\ -1\ 1\ 2\ 3\)\text{, }(\ -2\ 1\ 0\ 2\)\text{, }(\ -3\ 1\ -2\ 1\)\text{,}$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 2 & 3 & -2 \\ 1 & 2 & -1 \\ 2 & 3 & -1 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 1 & -8 \\ 2 & 0 & -5 \\ 3 & 1 & -7 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} \star & 1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & \star & -2 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & \star & 2 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

 $_{\grave{c}}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & a \\ \end{pmatrix} \text{ tenga determinante igual a 1?}$$

1)
$$0$$
 2) 3 3) -5 4) -4 5) -1

Encontrar la solución del sistema

$$-10 x_1 - 8 x_2 - 7 x_3 - 3 x_4 + 7 x_5 - 9 x_6 = -4$$

 $5 x_1 - 2 x_2 - 4 x_3 + 3 x_4 - 5 x_5 + 6 x_6 = -1$

$$4 x_1 - x_2 + 2 x_3 + x_4 - 2 x_5 + 3 x_6 == 5$$

 $x_1 + 3 x_2 - x_3 + x_4 - 2 x_5 + 2 x_6 == -4$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 8 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ -4 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -2 \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 11 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 11 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 9 \\ ? \\ ? \end{pmatrix}$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 7 \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ .4 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ .14 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ .3 \\ ? \end{pmatrix}$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	5K	9K	7K	8K
harinas vegetales	17K	32K	24K	27K
harinas de pescado	15K	28K	21K	24K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 70K 239K 211K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 10.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 5) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 1 & 1 & -2 & 1 \\ -1 & 0 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & -2 & 1 & 0 \end{array}\right).$$

$$1) \quad \left(\begin{array}{ccccc} ? & -6 & -9 & -5 \\ 1 & ? & 1 & 0 \\ 1 & 2 & ? & 2 \\ -1 & -2 & -3 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{cccccc} ? & 1 & 2 & 1 \\ 0 & ? & 1 & 0 \\ 0 & 2 & ? & 1 \\ 1 & 2 & 1 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{cccccc} ? & -2 & 1 & -2 \\ 1 & ? & 0 & -2 \\ 1 & -2 & ? & -3 \\ 0 & -2 & 2 & ? \end{array}\right) \quad 4)$$

$$\begin{pmatrix} ? & -1 & -1 & -1 \\ 5 & ? & -3 & -3 \\ -3 & 2 & ? & 2 \\ -1 & 2 & 0 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -1 & 1 \\ 1 & ? & 1 & -1 \\ 2 & 3 & ? & 1 \\ -1 & 1 & 3 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ -1 & ? & -1 & 0 \\ 1 & -1 & ? & -1 \\ 2 & 0 & 1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 2 & -3 \\ 0 & ? & 1 & 0 \\ 0 & -1 & ? & 0 \\ 0 & 0 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(0 \ 2 \ 1 \ -2)$$
, $(0 \ 1 \ 2 \ 0)$, $(2 \ -1 \ -1 \ 1)$,

son independientes?

Ejercicio 3

Comprobar si la upla (4 -2 -2) es combinación lineal de la uplas

$$(4 -2 -2), (2 -1 -1),$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{7} & -\mathbf{1} \\ -\mathbf{6} & \mathbf{1} \end{array}\right) \boldsymbol{.} X + \left(\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array}\right) = \left(\begin{array}{cc} -\mathbf{5} & \mathbf{1} \\ \mathbf{5} & \mathbf{0} \end{array}\right)$$

$$1)\quad \left(\begin{array}{ccc} -2 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{ccc} -1 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{ccc} 1 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{ccc} \star & -2 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{ccc} \star & -1 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 1 & -2 & 0 & 0 \\ -3 & 3 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ -1 & -1 & a & 1 \end{pmatrix} \text{ tenga determinante igual a 6?}$$

$$1)$$
 -5 2) 1 3) 2 4) 5 5) -4

Encontrar la solución del sistema

$$7 x_1 - x_2 + 5 x_4 == 3$$

 $-6 x_1 + x_2 + x_4 == -2$

tomando como parámetro, si ello fuera necesario, las
últimas variables y despejando las primeras (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -8 \end{pmatrix} + \langle \begin{pmatrix} -4 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -6 \end{pmatrix}, \begin{pmatrix} 6 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 10 \\ ? \\ ? \end{pmatrix} \rangle$$

$$2) \quad \begin{pmatrix} ? \\ 1 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 2 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ -4 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ \end{pmatrix} \rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -2 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 1 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -7 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} 1 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 0 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -6 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	16K	9K	17K	19K
harinas vegetales	19K	11K	22K	23K
harinas de pescado	14K	8K	16K	17K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 137K 169K 124K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 9.
- 1) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 0 & 0 & -2 & 5 \\ -1 & 1 & -1 & 0 \\ 2 & 0 & 3 & -2 \\ -2 & 1 & -2 & 0 \end{array}\right).$$

$$\begin{pmatrix} ? & -3 & 2 & 1 \\ 1 & ? & -2 & -1 \\ -2 & -2 & ? & 2 \\ -1 & 0 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & -2 & 0 \\ 0 & ? & 0 & 0 \\ -2 & 2 & ? & -1 \\ -2 & 2 & 3 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -1 & -1 \\ 2 & ? & 1 & 1 \\ 6 & 3 & ? & 8 \\ 4 & 2 & 5 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & 0 & 0 \\ 0 & ? & -1 & 0 \\ 0 & 2 & ? & -1 \\ 1 & -1 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -3 \ -2 \ 1 \ 2 \ -3 \) \text{, } (\ 2 \ 2 \ 0 \ -1 \ 1 \) \text{, } (\ 1 \ 2 \ 1 \ 1 \ 0 \) \text{, } (\ -1 \ 0 \ 1 \ 1 \ -2 \) \text{, } (\ 1 \ -2 \ 0 \ 2 \ -2 \) \text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla $(-8 \ -9 \ -1 \ -8)$ es combinación lineal de la uplas

$$(\ 0\ -1\ 1\ -1\)\ ,\ (\ -1\ -1\ 2\ 3\)\ ,\ (\ -2\ 1\ 2\ 1\)\ ,\ (\ 1\ 0\ 2\ 2\)\ ,\ (\ -1\ 1\ 1\ -3\)\ ,\ (\ 1\ -2\ 0\ 2\)\ ,$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 3 & 0 & 1 \end{array}\right)^{-1} \cdot X \cdot \left(\begin{array}{ccc} 5 & 3 & -6 \\ -2 & -1 & 3 \\ 4 & 2 & -5 \end{array}\right) = \left(\begin{array}{ccc} 6 & 3 & -8 \\ -10 & -5 & 13 \\ -18 & -9 & 24 \end{array}\right)$$

$$1) \quad \left(\begin{array}{cccc} -2 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{cccc} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{cccc} 1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{cccc} \star & -2 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccccc} \star & 0 & \star \\ \star & \star & \star \\ \star & \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} -1 & -5 & 2 & -2 \\ 1 & 3 & -1 & 2 \\ 0 & 1 & -1 & a \\ -2 & -5 & 1 & 0 \end{pmatrix} \text{ tenga determinante igual a } -4?$$

$$1) \quad -4 \qquad 2) \quad 0 \qquad 3) \quad -1 \qquad 4) \quad -5 \qquad 5) \quad -3$$

Encontrar la solución del sistema

$$9 x_1 - x_2 + 5 x_3 + 7 x_4 - 8 x_5 + 7 x_6 == -2$$

$$x_1 - x_2 + x_3 + 3 x_4 + 4 x_5 + 3 x_6 == 2$$

$$x_2 - x_3 + 2 \; x_4 - 2 \; x_5 + 3 \; x_6 == -2$$

$$x_1 + x_3 - 4 x_4 - 5 x_5 - 5 x_6 == -1$$

tomando como parámetro, si ello fuera necesario, las

- últimas variables y despejando las primeras (es decir al resolver
 - por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
- . Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ -3 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -5 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 9 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 8 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -5 \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ -5 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

$$5) \quad \begin{pmatrix} ? \\ -2 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ -2 \\ ? \\ ? \\ ? \end{pmatrix}$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	5K	7K	3K	7K
harinas vegetales	2K	4K	1K	2K
harinas de pescado	4K	3K	3K	7K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 41K 22K 21K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 2 sea igual a 5.
- 1) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=5, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\begin{pmatrix} -2 & -1 & 2 & 0 \\ -1 & 1 & 0 & 1 \\ -2 & -2 & 3 & -1 \\ -2 & -1 & 2 & -1 \end{pmatrix}$

$$1) \quad \begin{pmatrix} ? & 1 & 2 & -1 \\ -3 & ? & 2 & 0 \\ -3 & 2 & ? & -1 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -3 & 0 & -3 \\ 2 & ? & -1 & 2 \\ -2 & 0 & ? & -2 \\ -1 & 1 & 1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -3 & 1 & 6 \\ 1 & ? & 0 & 0 \\ 1 & -4 & ? & 7 \\ -1 & 2 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & -3 & 2 \\ -5 & ? & 5 & -3 \\ -4 & 1 & ? & -2 \\ -5 & 3 & 4 & ? \end{pmatrix} \qquad 5) \quad \begin{pmatrix} ? & -1 & -2 & 0 \\ 0 & ? & 1 & 0 \\ 1 & 0 & ? & 0 \\ 0 & 0 & 1 & ? \end{pmatrix} \qquad 6) \quad \begin{pmatrix} ? & -1 & -1 & 3 \\ -1 & ? & 0 & -1 \\ -2 & 0 & ? & -3 \\ 3 & -1 & -2 & ? \end{pmatrix} \qquad 7) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ 1 & ? & -2 & -5 \\ 3 & -3 & ? & 7 \\ 1 & -1 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-2\ 0\ -3\ 3\ -1\)$$
, $(-1\ -1\ -2\ -1\ -1\)$, $(-2\ 0\ -2\ 1\ -2\)$, $(2\ -2\ -2\ 1\ -2\)$, $(0\ 0\ -1\ 2\ 1\)$, $(-4\ 0\ -4\ 2\ -4\)$,

son independientes?

Ejercicio 3

Comprobar si la upla (-6 -1 2 -3) es combinación lineal de la uplas

$$(-1 \ -1 \ -2 \ -1)$$
, $(-1 \ -2 \ 0 \ -2)$, $(-2 \ -4 \ 0 \ -4)$, $(-2 \ -3 \ -2 \ -3)$,

1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 2 & 1 & -2 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \end{array}\right) \boldsymbol{.} X \, + \, \left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & -1 & 1 \end{array}\right) = \left(\begin{array}{ccc} 4 & -4 & 1 \\ 1 & -1 & 0 \\ 1 & -2 & 2 \end{array}\right)$$

$$1) \quad \begin{pmatrix} -1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} * & -1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & * & 0 \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & * & * \\ -2 & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} 2 & a & 1 & 2 \\ 0 & 1 & 1 & -2 \\ 1 & 0 & 1 & -1 \\ 1 & 0 & 1 & -2 \end{pmatrix} \text{ tenga determinante igual a } -3?$$

Encontrar la solución del sistema

$$\begin{array}{l} 4\;x_1\,+\,x_2\,-\,4\;x_3\,=\,-3\\ -x_1\,+\,x_3\,=\,10\\ -3\;x_1\,+\,x_2\,=\,-5\\ -x_1\,+\,x_2\,-\,x_3\,=\,-1 \end{array}$$

tomando como parámetro, si ello fuera necesario, las
últimas variables y despejando las primeras (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
. Expresar la solución mediante combinaciones lineales.

$$\mathbf{1})\quad \left(\begin{array}{c} ? \\ ? \\ -\mathbf{10} \end{array}\right) + \langle \left(\begin{array}{c} ? \\ ? \\ -\mathbf{6} \end{array}\right), \left(\begin{array}{c} ? \\ ? \\ 7 \end{array}\right), \left(\begin{array}{c} ? \\ \mathbf{6} \\ ? \end{array}\right) \rangle$$

- $2) \quad \left(\begin{array}{c} ? \\ ? \\ 23 \end{array}\right)$
- $3) \quad \left(\begin{array}{c} ? \\ 2 \\ ? \end{array}\right) + \left\langle \left(\begin{array}{c} -5 \\ ? \\ ? \end{array}\right) \right\rangle$
- 4) (?? 26)
- 5) (?)

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	8K	9K	6K
Pienso marca 2	4K	5K	3K
Pienso marca 3	13K	15K	10K
Pienso marca 4	10K	12K	7K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 147K 172K 110K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 17.
- 1) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 3) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{ccccc} 0 & 5 & -2 & 1 \\ 0 & -3 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ -1 & -4 & 2 & 0 \end{array}\right).$$

$$1) \quad \left(\begin{array}{ccccc} ? & -2 & 0 & -1 \\ 0 & ? & 1 & 0 \\ -1 & -1 & ? & 0 \\ -1 & -2 & -1 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{cccccc} ? & -3 & -1 & 0 \\ 1 & ? & -2 & 1 \\ -1 & 1 & ? & -1 \\ 1 & -1 & -2 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{cccccc} ? & -2 & -2 & -5 \\ -1 & ? & 0 & -5 \\ 0 & -2 & ? & -2 \\ 1 & 3 & 2 & ? \end{array}\right) \quad 4)$$

$$\begin{pmatrix} ? & -2 & 0 & 1 \\ 1 & ? & 1 & -2 \\ 0 & 2 & ? & -2 \\ 0 & -2 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -2 & -1 \\ -2 & ? & 0 & -1 \\ 1 & 0 & ? & 1 \\ -2 & 2 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & -1 & 3 \\ 1 & ? & -1 & 5 \\ 0 & 1 & ? & 0 \\ 1 & 0 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 1 & ? & 2 & 3 \\ -2 & 1 & ? & 0 \\ -1 & 1 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -2 \ -2 \ 0 \ 2 \ 1 \) \text{, } (\ -2 \ 1 \ 2 \ -1 \ -1 \) \text{, } (\ 2 \ 0 \ -2 \ -1 \ -2 \) \text{, } (\ -1 \ 0 \ -1 \ 2 \ 1 \) \text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (4 -8 0 8) es combinación lineal de la uplas

$$(-1\ 2\ 0\ -2)$$
, $(-2\ 4\ 0\ -4)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X + \left(\begin{array}{ccc} 2 & 1 & -1 \\ -1 & \emptyset & -1 \\ 0 & \emptyset & 1 \end{array}\right)\right) \boldsymbol{.} \left(\begin{array}{ccc} 1 & \emptyset & \emptyset \\ -2 & 2 & -3 \\ \emptyset & -1 & 2 \end{array}\right)^{-1} = \left(\begin{array}{ccc} \emptyset & -1 & -2 \\ -6 & -2 & -4 \\ \emptyset & \emptyset & 1 \end{array}\right)$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\left(\begin{array}{ccccc} 4 & -3 & -1 & -3 \\ -1 & 1 & a & -2 \\ -3 & 2 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{array} \right) \ \, \text{tenga determinante igual a -6?}$$

Encontrar la solución del sistema

$$\begin{array}{c} -5\;x_1-5\;x_2-2\;x_3-x_4-x_5+x_6==5\\ x_1-x_3+7\;x_4+6\;x_5-3\;x_6==-2\\ 10\;x_1+8\;x_2-4\;x_3+9\;x_4+8\;x_5-4\;x_6==-2\\ 4\;x_1+3\;x_2-5\;x_3+x_4+x_5==5 \end{array}$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} 2 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 24 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 25 \\ ? \\ ? \\ ? \\ 14 \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ -2 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ 29 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -30 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 6 \end{pmatrix} \right\rangle$$

$$3) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 3 \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ -2 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -30 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 24 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 13 \\ ? \end{pmatrix} \rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 6 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ 8 \end{pmatrix}, \begin{pmatrix} 2 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	2K	8K	3K	0K
harinas vegetales	4K	15K	5K	0K
harinas de pescado	1K	5K	2K	1K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 34K 64K 24K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 8.
- 1) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=4, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & -1 & 2 & 1 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} ? & -1 & -3 & -1 \\ 0 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ 2 & 1 & -2 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & 0 & 1 & 1 \\ 1 & ? & 1 & 0 \\ 1 & 1 & ? & 0 \\ 0 & 0 & 1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -1 & 0 & -3 \\ 1 & ? & 1 & 3 \\ 1 & 0 & ? & 0 \\ 1 & 0 & 0 & ? \end{pmatrix} \quad 4)$$

Ejercicio 2

¿Cuántas de las uplas

$$(-1\ 1\ 2\ 0\ 2)$$
, $(-2\ 2\ 4\ 0\ 4)$, $(1\ -2\ -2\ 2\ 1)$, $(0\ 0\ -2\ 2\ 2)$,

son independientes?

Ejercicio 3

Comprobar si la upla (-6 6 1 4) es combinación lineal de la uplas

$$(-2 \ -2 \ -4 \ 0)$$
, $(-1 \ -1 \ -2 \ 0)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 0 & 0 & -1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{array}\right) \cdot \left(X + \left(\begin{array}{ccc} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)\right) = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & -2 \end{array}\right)$$

$$1) \quad \begin{pmatrix} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} \star & \star & -2 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & \star & 1 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & \star & 2 \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} -2 & -2 & a & 1 \\ 1 & 0 & -2 & 0 \\ 1 & 1 & -2 & -2 \\ 0 & -1 & -1 & 3 \end{pmatrix} \text{ tenga determinante igual a } -6?$$

$$1) \quad -1 \qquad 2) \quad -3 \qquad 3) \quad -2 \qquad 4) \quad 1 \qquad 5) \quad -4$$

Encontrar la solución del sistema

$$-5 x_1 - 12 x_2 - 6 x_3 = -2$$

 $4 x_1 + 9 x_2 + 7 x_3 + 5 x_4 = 4$
 $x_1 + 2 x_2 + 3 x_3 - 5 x_4 = 4$
 $x_2 - 4 x_3 = -6$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 0 \end{pmatrix} + \langle \begin{pmatrix} -270 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

$$2) \quad \begin{pmatrix} -53 \\ ? \\ ? \\ ? \\ 26 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 26 \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} -3 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -8 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 2 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 8 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 1 \end{pmatrix} + \langle \begin{pmatrix} 0 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 2 \\ ? \end{pmatrix} \rangle$$

$$5) \quad \begin{pmatrix} ? \\ 17 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 24 \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	2K	2K	2K	7K
harinas vegetales	2K	2K	3K	1K
harinas de pescado	1K	1K	1K	4K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 59K 34K 32K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 1 sea igual a 4.

- 1) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=5
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 1 & -1 & 2 \\ -2 & 1 & 0 & -2 \\ -2 & 2 & -1 & -1 \\ 2 & 1 & -3 & 4 \end{pmatrix}.$$

$$1) \quad \begin{pmatrix} ? & -3 & -7 & -2 \\ -3 & ? & 2 & -1 \\ -5 & 3 & ? & 0 \\ 5 & -3 & -4 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & 8 & -6 & 1 \\ 2 & ? & -2 & 0 \\ 0 & -3 & ? & -1 \\ -2 & -7 & 5 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & 1 & 0 \\ 1 & ? & -1 & -1 \\ -1 & -1 & ? & 2 \\ 0 & 0 & 2 & ? \end{pmatrix} \quad 4)$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -1 \ \ -1 \ \ -1 \ \ -2 \ \ 1 \) \text{, } \ (\ -2 \ \ -1 \ \ -3 \ \ -1 \ \ 3 \) \text{, } \ (\ -1 \ \ 0 \ \ -2 \ \ 1 \ \ 2 \) \text{, } \ (\ 0 \ \ 2 \ \ 0 \ \ 0 \ \ -1 \) \text{, }$$

son independientes?

Ejercicio 3

Comprobar si la upla (0 0 0 0) es combinación lineal de la uplas

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{ccc} 3 & -2 & 1 \\ 5 & -3 & 3 \\ -2 & 1 & -1 \end{array}\right) . X . \left(\begin{array}{ccc} 0 & 1 & 1 \\ -1 & 2 & 2 \\ 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} -1 & 4 & 7 \\ 0 & 2 & 8 \\ 0 & -1 & -3 \end{array}\right)$$

$$1) \ \, \begin{pmatrix} -2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 2) \ \, \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 3) \ \, \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 4) \ \, \begin{pmatrix} * & -1 & * \\ * & * & * \\ * & * & * \end{pmatrix} \qquad 5) \ \, \begin{pmatrix} * & 1 & * \\ * & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

 $\grave{\epsilon}$ Qué valor debe tener el parámetro a para que la matriz

$$\begin{pmatrix} 0 & -1 & 0 & -1 \\ 2 & -1 & 1 & -2 \\ 1 & -1 & 1 & -2 \\ 2 & a & 1 & 2 \end{pmatrix} \text{ tenga determinante igual a 1?}$$

1)
$$0$$
 2) 2 3) -2 4) -1 5) -3

Encontrar la solución del sistema

$$-3 x_1 + 3 x_2 + 3 x_3 + 4 x_4 + 4 x_5 + 3 x_6 == -5$$

 $-x_3 + x_4 + 2 x_5 + x_6 == 5$

$$-4 x_1 + 5 x_2 - 4 x_4 - 5 x_5 - 3 x_6 = 5$$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 6 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ -9 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -5 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ 0 \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 25 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 13 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 3 \\ ? \end{pmatrix} \rangle$$

$$3) \quad \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -8 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 11 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 2 \\ ? \\ ? \end{pmatrix}$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	0K	2K	1K	1K
harinas vegetales	2K	9K	5K	4K
harinas de pescado	5K	4K	3K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 4K 22K 19K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 5.
- 1) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} -3 & -2 & 1 & -4 \\ -2 & -1 & 1 & -3 \\ -1 & 0 & 0 & -1 \\ 3 & 1 & 0 & 4 \end{pmatrix}$$

$$\begin{pmatrix} ? & -1 & -1 & 0 \\ -1 & ? & 1 & 1 \\ 1 & 2 & ? & 0 \\ -2 & -3 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ -2 & ? & -1 & 2 \\ 2 & -1 & ? & -2 \\ -3 & 2 & 0 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ 0 & ? & 1 & -1 \\ 0 & -1 & ? & 0 \\ -1 & 1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & -3 \\ 0 & ? & 1 & -2 \\ 1 & 0 & ? & 2 \\ -1 & 2 & -2 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -1 \ 2 \ 1 \ -2 \) \text{, } (\ -2 \ -1 \ -3 \ 2 \) \text{, } (\ 1 \ -1 \ 1 \ 0 \) \text{, } (\ -1 \ -2 \ -2 \ 2 \) \text{, } (\ 0 \ 0 \ 0 \ -2 \) \text{, }$$

son independientes?

Ejercicio 3

Comprobar si la upla (5 -2 -3) es combinación lineal de la uplas

$$(04-4), (02-2),$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{1} \end{array}\right) \boldsymbol{.} \left(X + \left(\begin{array}{cc} \mathbf{5} & \mathbf{13} \\ -\mathbf{2} & -\mathbf{5} \end{array}\right)\right) = \left(\begin{array}{cc} \mathbf{0} & \mathbf{5} \\ -\mathbf{3} & -\mathbf{4} \end{array}\right)$$

$$1)\quad \left(\begin{array}{cc} -1 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{cc} 0 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{cc} 2 & \star \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{cc} \star & 0 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{cc} \star & -1 \\ \star & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 1 & 2 & 1 & a \\ 0 & -1 & 0 & -1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \text{ tenga determinante igual a } -3?$$

Encontrar la solución del sistema

$$-3 x_1 - 8 x_2 + 8 x_3 - 3 x_4 + 5 x_5 == 0$$

$$5 x_1 + 13 x_2 - 5 x_3 - 2 x_4 == 2$$

$$-2 x_1 - 5 x_2 - 3 x_3 + 5 x_4 - 5 x_5 == -2$$

tomando como parámetro, si ello fuera necesario, las

últimas variables y despejando las primeras (es decir al resolver

por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 3 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ -7 \end{pmatrix}, \begin{pmatrix} ? \\ -4 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ 6 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ -6 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \end{pmatrix}$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	1K	10K	6K	15K
harinas vegetales	10K	0K	3K	7K
harinas de pescado	1K	3K	2K	5K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 133K 44K 43K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 12.
- 1) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=5
- 5) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?

Ejercicio 1

Ejercicio 2

```
¿Cuántas de las uplas ( -1 0 1 2 ), ( -1 -1 1 1 ), ( 1 -1 1 1 ), son independientes?

1) 1 2) 2 3) 3
```

Ejercicio 3

Comprobar si la upla (4 -4 -6) es combinación lineal de la uplas (1 -1 1), (-1 1 1),

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} X - \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -1 & 0 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & 2 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & * \\ -1 & * \end{pmatrix}$$

Ejercicio 5

¿Qué valor debe tener el parámetro a para que la matriz $\begin{pmatrix} 1 & 0 & -1 & 1 \\ 2 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ a & 1 & 1 & 1 \end{pmatrix} \text{ tenga determinante igual a } -9?$ 1) 5 2) -5 3) 4 4) 0 5) 2

Encontrar la solución del sistema

$$x_1 - x_2 - 3 x_3 + 2 x_4 - 5 x_5 = -4$$

 $2 x_1 - x_2 + 4 x_3 + x_4 + 2 x_5 = -3$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 0 \end{pmatrix} + \langle \begin{pmatrix} -7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 3 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -7 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	1K	3K	8K	3K
harinas vegetales	2K	9K	20K	7K
harinas de pescado	0K	7K	11K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 32K 82K 47K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 7.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=0, Pienso 4=?
- 3) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?

Ejercicio 1

$$\begin{pmatrix} ? & -1 & -4 & 2 \\ 0 & ? & -3 & 1 \\ 0 & 1 & ? & -2 \\ 0 & 3 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ 0 & ? & -2 & 0 \\ 0 & 0 & ? & -1 \\ -1 & 0 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ 2 & ? & 1 & 0 \\ -3 & -2 & ? & 2 \\ 0 & -1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & -1 \\ 0 & ? & 0 & 0 \\ -1 & 1 & ? & 0 \\ 0 & -2 & 1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas (-1 0 1 -2), (2 1 -2 2), (-1 2 1 -1), son independientes?

Ejercicio 3

Comprobar si la upla (0 0 0) es combinación lineal de la uplas (-2 4 2), (-1 2 1), $(\ \) \ \ Si \qquad \ \ 2) \ \ No$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 5 & 8 \\ 3 & 5 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} -16 & -8 \\ -10 & -5 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix}$$

Ejercicio 5

$$\left(\begin{array}{ccccc} 1 & 1 & 2 & a \\ -1 & 1 & 2 & 2 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 2 \end{array} \right) \ \ \text{tenga determinante igual a -3?}$$

Encontrar la solución del sistema

$$\begin{aligned} x_1 + 2 & x_2 + x_3 - 7 & x_5 &= 1 \\ 5 & x_1 + 8 & x_2 - 3 & x_3 + 2 & x_4 - 3 & x_5 &= 5 \\ 3 & x_1 + 5 & x_2 - x_3 + x_4 - 5 & x_5 &= 3 \end{aligned}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$\mathbf{1})\quad \begin{pmatrix} ?\\?\\4\\?\\\end{pmatrix} + \left\langle \begin{pmatrix} ?\\?\\?\\10\\? \end{pmatrix}, \begin{pmatrix} ?\\?\\6\\?\\?\\\end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ ? \\ 3 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 8 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -1 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -24 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 0 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -4 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 1 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 16 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} 8 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ 9 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 4 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -10 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 0 \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	3K	1K	6K
Pienso marca 2	5K	2K	9K
Pienso marca 3	5K	2K	9K
Pienso marca 4	8K	3K	16K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 6K harinas de pescado 31K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 3 sea igual a 0.
- 1) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 3) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 3 & -3 & -3 & -4 \\ -2 & 3 & 3 & 4 \\ -3 & 2 & 3 & 4 \\ 2 & -1 & -1 & -1 \end{pmatrix} .$$

$$1) \quad \begin{pmatrix} ? & 1 & 0 & 0 \\ -1 & ? & -1 & 0 \\ 7 & 5 & ? & -4 \\ -4 & -3 & 0 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -5 & -4 & -6 \\ -1 & ? & 0 & 3 \\ -2 & 2 & ? & 4 \\ -2 & 1 & 1 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -3 & 3 & 0 \\ 0 & ? & -1 & 0 \\ 0 & -2 & ? & 2 \\ -1 & 0 & 1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} -4 & -3 & 0 & ? \end{pmatrix} \qquad \begin{pmatrix} -2 & 1 & 1 & ? \end{pmatrix} \qquad \begin{pmatrix} -1 & 0 & 1 & ? \end{pmatrix}$$

$$\begin{pmatrix} ? & -2 & 0 & 1 \\ 1 & ? & -1 & 1 \\ -1 & 2 & ? & 0 \\ 0 & -1 & 0 & ? \end{pmatrix} \qquad 5) \qquad \begin{pmatrix} ? & -1 & -1 & 0 \\ 2 & ? & -1 & 0 \\ 0 & 0 & ? & 0 \\ -5 & 2 & 2 & ? \end{pmatrix} \qquad 6) \qquad \begin{pmatrix} ? & -1 & 0 & 0 \\ 0 & ? & 1 & 0 \\ -1 & 4 & ? & 3 \\ 0 & 2 & 0 & ? \end{pmatrix} \qquad 7) \qquad \begin{pmatrix} ? & -1 & 0 & 1 \\ 1 & ? & -1 & -1 \\ 0 & 0 & ? & 1 \\ -1 & -1 & 3 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(-1\ 2\ 0\ -2\ 2)$$
, $(-1\ -1\ 0\ 1\ 2)$, $(-2\ 1\ -1\ 1\ -2)$, $(-2\ 1\ 2\ 1\ 2)$, $(-4\ 2\ 1\ 2\ 0)$, son independientes?

1) 1 2) 2 3) 3 4) 4 5) 5

Ejercicio 3

Comprobar si la upla (-1 -2 1 1) es combinación lineal de la uplas (-1 -2 1 1), (-2 0 -1 2), (-2 -4 2 2), (-1 1 -2 2), (-1 2 -2 1), (-2 -1 -1 3), (-2 -1 -1 3), (-2 -1 -1 3)

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} 2 & -1 & 1 \\ -2 & 1 & -2 \\ 1 & 0 & 1 \end{pmatrix} \cdot X + \begin{pmatrix} 0 & 0 & 1 \\ 1 & 2 & -1 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & -2 & 2 \\ 3 & 5 & -2 \\ -1 & -1 & 0 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 2) \quad \begin{pmatrix} * & 2 & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad 3) \quad \begin{pmatrix} * & * & -2 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 4) \quad \begin{pmatrix} * & * & -1 \\ * & * & * \\ * & * & * \end{pmatrix} \quad 5) \quad \begin{pmatrix} * & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix}$$

Ejercicio 5

$$\left(\begin{array}{ccccc} 1 & 1 & 1 & -1 \\ -1 & -1 & 0 & 0 \\ -2 & 0 & 0 & 1 \\ a & -1 & 1 & 0 \end{array}\right) \text{ tenga determinante igual a 1?}$$

Encontrar la solución del sistema

$$\begin{array}{l} -x_1 + 4 \; x_2 - x_3 + 2 \; x_4 - 5 \; x_5 == -5 \\ -8 \; x_2 + x_3 - 5 \; x_4 + 7 \; x_5 == -5 \\ -4 \; x_1 + 3 \; x_2 - 2 \; x_3 - 5 \; x_4 + 3 \; x_5 == 3 \\ 2 \; x_1 - x_2 + x_3 + 2 \; x_4 == 4 \end{array}$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 3 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ -2 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ -30 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$3) \quad \begin{pmatrix} ? \\ -9 \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} 3 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 10 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -4 \\ ? \\ ? \\ ? \\ 4 \end{pmatrix} \rangle$$

$$\begin{array}{cccc}
\begin{pmatrix}
? \\
 \end{pmatrix} & \begin{pmatrix}
? \\
? \\
? \\
? \\
? \\
?
\end{pmatrix} + \begin{pmatrix}
? \\
? \\
13 \\
? \\
? \\
?
\end{pmatrix} + \begin{pmatrix}
? \\
? \\
-31 \\
? \\
?
\end{pmatrix}$$

$$\begin{pmatrix}
? \\
? \\
-31 \\
? \\
?
\end{pmatrix}$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ -8 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 4 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 8 \\ ? \end{pmatrix}, \begin{pmatrix} -3 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ 0 \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	17K	19K	8K	25K
harinas vegetales	25K	28K	12K	37K
harinas de pescado	10K	12K	5K	16K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 267K 395K 167K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 16.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=4
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=2
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 6 & 2 & 2 & -1 \\ 4 & 1 & 1 & -1 \\ -3 & 0 & 1 & 3 \end{pmatrix}.$$

$$1) \quad \left(\begin{array}{ccccc} ? & -3 & 0 & -3 \\ 1 & ? & -1 & -3 \\ -1 & 2 & ? & 4 \\ -1 & 2 & 0 & ? \end{array}\right) \quad 2) \quad \left(\begin{array}{ccccccc} ? & 0 & 0 & 0 \\ 1 & ? & -7 & -1 \\ -3 & -3 & ? & 1 \\ 2 & 1 & -2 & ? \end{array}\right) \quad 3) \quad \left(\begin{array}{cccccccc} ? & -1 & -1 & 0 \\ -1 & ? & -2 & 2 \\ 1 & -4 & ? & -1 \\ 0 & 2 & -1 & ? \end{array}\right) \quad 4)$$

$$\begin{pmatrix} ? & -1 & 0 & -1 \\ 1 & ? & 0 & 1 \\ 1 & 0 & ? & 1 \\ 0 & 0 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 2 & ? & 0 & -1 \\ 1 & 0 & ? & 0 \\ 1 & 1 & 2 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 2 & ? & 1 & 2 \\ 3 & 4 & ? & 2 \\ 0 & 1 & 0 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 2 & 1 \\ 2 & ? & 3 & 2 \\ 4 & -1 & ? & 2 \\ 0 & 1 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

Ejercicio 3

Comprobar si la upla (4 2 8 5) es combinación lineal de la uplas

$$(\ -3 \ -1 \ 1 \ -3 \) \text{, } (\ -1 \ 2 \ 0 \ 0 \) \text{, } (\ -1 \ 1 \ 0 \ -2 \) \text{, } (\ 2 \ 0 \ -2 \ -1 \) \text{, } (\ 2 \ 2 \ -1 \ 1 \) \text{,}$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cccc} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 2 & 1 & 1 \end{array}\right) \cdot \left(X + \left(\begin{array}{cccc} -1 & -1 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right)\right) = \left(\begin{array}{cccc} 0 & -2 & 3 \\ -1 & -2 & 2 \\ -4 & -3 & 4 \end{array}\right)$$

$$1) \quad \begin{pmatrix} -1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 1 & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} \star & 0 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & 1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & -1 & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} 0 & -1 & 1 & 1 \\ 3 & 2 & 0 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & a \end{pmatrix} \text{ tenga determinante igual a } -13?$$

Encontrar la solución del sistema

$$x_3 + 3 x_4 + 2 x_5 = -1$$

 $-4 x_1 + 4 x_2 - 2 x_3 - 3 x_4 - 2 x_5 = -4$
 $5 x_1 + 2 x_2 + x_4 + x_5 = -3$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ -1 \\ ? \\ ? \\ ? \\ -17 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -17 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 3 \\ ? \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ 0 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -4 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 4 \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4)\quad \left(\begin{array}{c} -3\\ ?\\ ?\\ ?\\ ?\\ ?\\ \end{array}\right)+\left\langle \left(\begin{array}{c} ?\\ ?\\ ?\\ ?\\ -20 \end{array}\right), \left(\begin{array}{c} ?\\ ?\\ 3\\ ?\\ ?\\ \end{array}\right)\right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ ? \\ ? \\ -3 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -2 \\ ? \end{pmatrix}, \begin{pmatrix} -6 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 10 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 2 \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	2K	8K	1K
Pienso marca 2	9K	29K	6K
Pienso marca 3	10K	32K	7K
Pienso marca 4	7K	22K	5K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 90K 296K 60K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 14.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=3, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 5) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz $\left(\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -2 \\ -2 & -1 & 1 & 4 \\ 0 & 1 & 0 & 2 \end{array} \right).$

$$1) \quad \begin{pmatrix} ? & -2 & -1 & 1 \\ 0 & ? & -2 & 1 \\ 0 & 0 & ? & 0 \\ 2 & -5 & -3 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -2 & 11 & -11 \\ 3 & ? & -4 & 4 \\ -9 & -2 & ? & -10 \\ -1 & 0 & 0 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -1 & 0 & 0 \\ -2 & ? & 0 & 1 \\ -2 & 4 & ? & 1 \\ 1 & -1 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & 0 & -1 \\ -1 & ? & 0 & 1 \\ -2 & 2 & ? & 3 \\ -1 & 1 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 1 & 1 \\ -1 & ? & 1 & 1 \\ 0 & 1 & ? & 0 \\ -2 & 0 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 2 & -1 \\ 2 & ? & -4 & -1 \\ -1 & -1 & ? & 1 \\ 0 & 1 & -3 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 3 & -2 \\ 5 & ? & 3 & -1 \\ -3 & -2 & ? & 0 \\ 2 & 3 & -4 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 2\ 2\ 1\ 0\)\text{, }(\ -4\ -4\ -3\ -1\)\text{, }(\ -2\ -2\ -2\ -1\)\text{, }(\ -1\ -1\ -2\ 0\)\text{, }(\ -2\ -1\ -1\ 2\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (-2 -1 -1) es combinación lineal de la uplas

$$(\ -2 \ -1 \ -1 \)$$
 , $(\ 2 \ -2 \ -2 \)$, $(\ -4 \ -2 \ -2 \)$,

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X - \begin{pmatrix} 2 & -1 \\ 3 & -1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 5 \\ -8 & 20 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} -1 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 0 & * \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & -1 \\ * & * \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} a & 1 & 2 & 1 \\ 1 & 1 & 2 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \text{ tenga determinante igual a 7?}$$

Encontrar la solución del sistema

$$2 x_1 + 3 x_2 - 2 x_3 + 2 x_4 - x_5 == 0$$

 $x_1 + 4 x_2 + 4 x_3 + 3 x_4 - x_5 == 2$
 $-5 x_2 - 10 x_3 - 4 x_4 + x_5 == -4$

tomando como parámetro, si ello fuera necesario, las primeras variables y despejando las últimas (es decir al resolver por Gauss, comenzaremos seleccionando columnas de derecha a izquierda) . Expresar la solución mediante combinaciones lineales.

- ? | 7 | ? | ?
- ???7 2)
- ? ? -2 ?
- ? ? -1 + \langle \bigg| ? ? 1 ?
- ? ? ? ? ?

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	harinas animales	harinas vegetales	harinas de pescado
Pienso marca 1	12K	19K	4K
Pienso marca 2	2K	4K	1K
Pienso marca 3	4K	10K	3K
Pienso marca 4	11K	18K	4K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 111K 191K 44K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 14.
- 1) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=?, Pienso 2=3, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=4, Pienso 2=?, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 0 & 1 & -3 & 0 \\ -1 & 1 & -2 & -1 \\ 1 & -1 & 3 & 1 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$
.
$$1) \quad \begin{pmatrix} ? & -2 & -2 & -1 \\ 1 & ? & 2 & 1 \\ 0 & -1 & ? & -1 \\ 1 & -1 & 1 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & 1 & 1 & -1 \\ 1 & ? & 3 & 0 \\ 0 & 1 & ? & 0 \\ 1 & -1 & 0 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -2 & 0 & 0 \\ -3 & ? & -1 & 0 \\ 5 & 5 & ? & 3 \\ 3 & 3 & 0 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -2 & 2 & 2 \\ -1 & ? & -3 & -2 \\ 0 & -1 & ? & -1 \\ 0 & -3 & 2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -2 & 9 & -9 \\ 1 & ? & -2 & 3 \\ -6 & -2 & ? & -11 \\ 0 & 1 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 0 & -1 \\ 1 & ? & 3 & -3 \\ 0 & 1 & ? & -1 \\ -1 & -1 & -1 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ 1 & ? & -1 & -1 \\ -1 & 1 & ? & 1 \\ 0 & 1 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ -1 \ \ 1 \ \ 2 \ \ 1 \) \text{, } \ (\ -1 \ \ 1 \ \ -1 \ \ 0 \) \text{, } \ (\ 1 \ \ -2 \ \ -2 \ \ 2 \) \text{, } \ (\ -1 \ \ 1 \ \ 0 \ \ -2 \) \text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (-7 9 -2) es combinación lineal de la uplas

$$(\ -2 \ 4 \ 0 \) \text{,} \ (\ -3 \ 1 \ -2 \) \text{,} \ (\ -1 \ 2 \ 0 \) \text{,} \ (\ 2 \ 1 \ 2 \) \text{,}$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X + \begin{pmatrix} 2 & -1 \\ 3 & -1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & * \\ * & * \end{pmatrix} \qquad 2) \quad \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \qquad 3) \quad \begin{pmatrix} * & -2 \\ * & * \end{pmatrix} \qquad 4) \quad \begin{pmatrix} * & * \\ -2 & * \end{pmatrix} \qquad 5) \quad \begin{pmatrix} * & * \\ -1 & * \end{pmatrix}$$

Ejercicio 5

1) 1 2)
$$-2$$
 3) 5 4) -4 5) -3

Encontrar la solución del sistema

$$2 x_1 - x_2 + 5 x_3 - x_4 - 5 x_5 == -5$$

 $3 x_1 - x_2 + 3 x_3 - 3 x_4 + 4 x_5 == 2$

$$x_1 - 2 x_3 - 2 x_4 + 9 x_5 == 7$$

tomando como parámetro, si ello fuera necesario, las últimas variables y despejando las primeras (es decir al resolver por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)

. Expresar la solución mediante combinaciones lineales.

$$1) \quad \begin{pmatrix} ? \\ ? \\ ? \\ 0 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} 2 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ 3 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -9 \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$5) \quad \begin{pmatrix} ? \\ ? \\ -3 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 11 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} 3 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -10 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	4K	3K	3K	3K
harinas vegetales	6K	7K	5K	6K
harinas de pescado	9K	8K	7K	8K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 18K 48K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 6.
- 1) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=3
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\left(\begin{array}{cccc} 0 & 2 & 5 & -1 \\ 0 & -2 & -6 & 1 \\ -1 & 1 & 3 & -1 \\ 0 & 1 & 3 & 0 \end{array} \right).$$

$$\begin{pmatrix} ? & -2 & 2 & 1 \\ 4 & ? & 3 & 1 \\ -3 & 1 & ? & -2 \\ 2 & -1 & 2 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & -2 & -2 \\ -1 & ? & -1 & 0 \\ 2 & 2 & ? & 1 \\ 1 & 2 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 1 & -1 \\ 1 & ? & -4 & 5 \\ 1 & 3 & ? & 5 \\ 0 & 2 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 1 \\ 2 & ? & -2 & 1 \\ -1 & -2 & ? & 0 \\ -1 & -1 & 0 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

$$(\ 2\ 0\ 0\ -1\)\text{, }\ (\ -1\ 0\ -1\ -2\)\text{, }\ (\ 0\ -1\ -1\ -1\)\text{,}$$

son independientes?

Ejercicio 3

Comprobar si la upla (0 0 0) es combinación lineal de la uplas

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(X - \left(\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{2} & \mathbf{1} \end{array}\right)\right) \boldsymbol{.} \left(\begin{array}{cc} \mathbf{1} & -\mathbf{2} \\ -\mathbf{1} & \mathbf{3} \end{array}\right) = \left(\begin{array}{cc} -\mathbf{1} & \mathbf{3} \\ -\mathbf{1} & \mathbf{2} \end{array}\right)$$

$$1)\quad \left(\begin{array}{ccc} 0 & \star \\ \star & \star \end{array}\right) \qquad 2)\quad \left(\begin{array}{ccc} 2 & \star \\ \star & \star \end{array}\right) \qquad 3)\quad \left(\begin{array}{ccc} \star & 1 \\ \star & \star \end{array}\right) \qquad 4)\quad \left(\begin{array}{ccc} \star & 2 \\ \star & \star \end{array}\right) \qquad 5)\quad \left(\begin{array}{ccc} \star & \star \\ 0 & \star \end{array}\right)$$

Ejercicio 5

$$\begin{pmatrix} 1 & -1 & 1 & a \\ 0 & 4 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 2 \end{pmatrix} \text{ tenga determinante igual a } -14?$$

Encontrar la solución del sistema

$$x_1 - 2 x_2 - x_3 + 3 x_4 == -5$$

 $-x_1 + 3 x_2 + 2 x_3 + 3 x_4 == 0$
 $x_2 + x_3 + 6 x_4 == -5$

tomando como parámetro, si ello fuera necesario, las
últimas variables y despejando las primeras (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de izquierda a derecha)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ -5 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 5 \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ \end{pmatrix} + \left\langle \begin{pmatrix} -2 \\ ? \\ ? \\ ? \\ ? \\ \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 5 \\ 2 \\ , \begin{pmatrix} -6 \\ ? \\ ? \\ ? \\ ? \\ ? \\ \end{pmatrix} \right\rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ 0 \\ 2 \end{pmatrix} + \langle \begin{pmatrix} -1 \\ ? \\ ? \\ 2 \end{pmatrix}, \begin{pmatrix} -15 \\ ? \\ ? \\ ? \\ 2 \end{pmatrix} \rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -3 \end{pmatrix} + \left\langle \begin{pmatrix} 2 \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ -9 \\ ? \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ -8 \\ ? \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} -2 \\ ? \\ ? \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} -17 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	1K	3K	3K	2K
harinas vegetales	5K	12K	11K	1K
harinas de pescado	0K	1K	1K	2K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 32K 94K 16K

- ¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por cuestiones de almacenamiento, deseamos que el número total de sacos para cada animal sea igual a 15.
- 1) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=1
- 2) Pienso 1=?, Pienso 2=?, Pienso 3=1, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=5

Ejercicio 1

$$\begin{pmatrix} ? & -1 & 0 & 0 \\ -1 & ? & 0 & 0 \\ -1 & 2 & ? & 0 \\ -3 & 5 & 1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 0 & 1 \\ -2 & ? & 2 & -2 \\ -2 & -1 & ? & 0 \\ 3 & 1 & -2 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & -1 & 1 & -3 \\ 0 & ? & 0 & 0 \\ 2 & -3 & ? & -3 \\ 3 & -2 & 3 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & -1 & 1 & 0 \\ -1 & ? & 1 & 0 \\ -2 & 0 & ? & 0 \\ 1 & -1 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas

(
$$-3$$
 3 1 2), (2 -2 0 -1), (0 -1 2 -2), (-1 1 1 1),

son independientes?

Ejercicio 3

Comprobar si la upla (3 -7 8) es combinación lineal de la uplas

$$(1 \ 1 \ 1), (2 \ -2 \ -1), (2 \ 0 \ -1),$$

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\left(\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array}\right) . X - \left(\begin{array}{cc} \mathbf{1} & \mathbf{1} \\ -2 & -\mathbf{1} \end{array}\right) = \left(\begin{array}{cc} -\mathbf{1} & \mathbf{0} \\ \mathbf{3} & \mathbf{0} \end{array}\right)$$

$$1) \quad \left(\begin{array}{ccc} -2 & \star \\ \star & \star \end{array} \right) \qquad 2) \quad \left(\begin{array}{ccc} -1 & \star \\ \star & \star \end{array} \right) \qquad 3) \quad \left(\begin{array}{ccc} 2 & \star \\ \star & \star \end{array} \right) \qquad 4) \quad \left(\begin{array}{ccc} \star & 1 \\ \star & \star \end{array} \right) \qquad 5) \quad \left(\begin{array}{ccc} \star & -1 \\ \star & \star \end{array} \right)$$

Ejercicio 5

$$\begin{pmatrix} -2 & 0 & 0 & 1 \\ -2 & 1 & 0 & 1 \\ a & -1 & 1 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix} \text{ tenga determinante igual a 4?}$$

1)
$$-2$$
 2) 2 3) 3 4) -1 5) 1

Encontrar la solución del sistema

$$x_1 - 3 x_2 + x_3 + x_4 == -3$$

 $-4 x_1 - 3 x_2 - 2 x_3 - x_4 == -5$
 $9 x_1 + 3 x_2 + 5 x_3 + 3 x_4 == 7$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ 2 \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ -4 \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 8 \end{pmatrix} \rangle$$

3)
$$\begin{pmatrix} ? \\ ? \\ -2 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ 3 \\ ? \\ ? \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 1 \end{pmatrix}, \begin{pmatrix} 6 \\ ? \\ ? \\ ? \\ ? \end{pmatrix} \right\rangle$$

$$4) \quad \begin{pmatrix} ? \\ ? \\ 10 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 3 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ -4 \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ ? \\ ? \\ -11 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ ? \\ 9 \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	1K	2K	2K	2K
harinas vegetales	1K	0K	2K	1K
harinas de pescado	0K	1K	1K	1K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 19K 10K 7K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 2 sea igual a 2.

- 1) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 2) Pienso 1=3, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=?, Pienso 2=0, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=1, Pienso 3=?, Pienso 4=?
- 5) Pienso 1=?, Pienso 2=2, Pienso 3=?, Pienso 4=?

Ejercicio 1

Calcular la inversa de la matriz
$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & -2 & 4 & -3 \\ 0 & 1 & -1 & 2 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} ? & -5 & 13 & 7 \\ 14 & ? & 12 & 5 \\ 1 & 0 & ? & 0 \\ 7 & -2 & 6 & ? \end{pmatrix} \quad 2) \quad \begin{pmatrix} ? & -2 & -1 & 1 \\ -3 & ? & -3 & 3 \\ 1 & 3 & ? & -2 \\ -2 & -4 & -4 & ? \end{pmatrix} \quad 3) \quad \begin{pmatrix} ? & -1 & -1 & -1 \\ 0 & ? & 3 & 2 \\ 0 & 1 & ? & 1 \\ 0 & -2 & -1 & ? \end{pmatrix} \quad 4)$$

$$\begin{pmatrix} ? & -1 & -1 & 2 \\ 1 & ? & 1 & 0 \\ 2 & 0 & ? & 3 \\ -1 & 0 & -1 & ? \end{pmatrix} \quad 5) \quad \begin{pmatrix} ? & -1 & 3 & 1 \\ -2 & ? & -3 & 0 \\ 1 & -1 & ? & 0 \\ -2 & 1 & 1 & ? \end{pmatrix} \quad 6) \quad \begin{pmatrix} ? & 0 & -2 & 1 \\ 0 & ? & 0 & 2 \\ 0 & 2 & ? & 6 \\ 0 & 3 & -2 & ? \end{pmatrix} \quad 7) \quad \begin{pmatrix} ? & 0 & -1 & 0 \\ -2 & ? & 0 & -1 \\ -1 & 1 & ? & 0 \\ 0 & 1 & -1 & ? \end{pmatrix}$$

Ejercicio 2

¿Cuántas de las uplas
(1 1 0 1), (-1 0 2 -1), (-1 -1 2 0),
son independientes?

Ejercicio 3

Comprobar si la upla (-1 -6 -1) es combinación lineal de la uplas (-1 0 0), (0 0 -1), (-2 2 1), 1) Si 2) No

Ejercicio 4

Calcular la matriz X despejando en la siguiente ecuaciones:

$$\begin{pmatrix} X - \begin{pmatrix} -1 & 1 \\ -3 & 2 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 7 & 2 \end{pmatrix}$$

$$1) \quad \begin{pmatrix} -2 & \star \\ \star & \star \end{pmatrix} \qquad 2) \quad \begin{pmatrix} -1 & \star \\ \star & \star \end{pmatrix} \qquad 3) \quad \begin{pmatrix} 2 & \star \\ \star & \star \end{pmatrix} \qquad 4) \quad \begin{pmatrix} \star & -2 \\ \star & \star \end{pmatrix} \qquad 5) \quad \begin{pmatrix} \star & -1 \\ \star & \star \end{pmatrix}$$

Ejercicio 5

$$\begin{pmatrix} 0 & a & -2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & -2 & 1 \\ 1 & 2 & -2 & 2 \end{pmatrix} \text{ tenga determinante igual a 5?}$$

Encontrar la solución del sistema

$$3 x_1 - 3 x_2 - x_3 + x_4 == -1$$

 $-x_1 - 3 x_3 + 2 x_4 == -3$
 $10 x_1 - 9 x_2 + x_4 == 0$

tomando como parámetro, si ello fuera necesario, las
primeras variables y despejando las últimas (es decir al resolver
 por Gauss, comenzaremos seleccionando columnas de derecha a izquierda)
. Expresar la solución mediante combinaciones lineales.

1)
$$\begin{pmatrix} ? \\ ? \\ 1 \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -7 \\ 2 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 6 \\ 2 \end{pmatrix} \right\rangle$$

$$2) \quad \begin{pmatrix} -5 \\ ? \\ ? \\ ? \end{pmatrix} + \langle \begin{pmatrix} ? \\ ? \\ ? \\ ? \end{pmatrix} \rangle$$

3)
$$\begin{pmatrix} ? \\ 6 \\ ? \\ 2 \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ -2 \\ 2 \end{pmatrix} \right\rangle$$

4)
$$\begin{pmatrix} ? \\ ? \\ 4 \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -9 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 5 \\ ? \end{pmatrix} \right\rangle$$

5)
$$\begin{pmatrix} ? \\ -1 \\ ? \\ ? \end{pmatrix} + \left\langle \begin{pmatrix} ? \\ ? \\ ? \\ -7 \end{pmatrix}, \begin{pmatrix} ? \\ ? \\ 8 \\ ? \end{pmatrix} \right\rangle$$

Ejercicio 7

En cierta explotación ganadera se emplean diferentes marcas de piensos. Cada marca combina en diferentes cantidades distintos tipos de harinas según vemos en la siguiente tabla en la que se indica la cantidad de kilos de cada compuesto que contiene un saco de cada marca:

	Pienso marca 1	Pienso marca 2	Pienso marca 3	Pienso marca 4
harinas animales	2K	1K	0K	3K
harinas vegetales	1K	1K	1K	1K
harinas de pescado	2K	1K	1K	3K

Los técnicos de la explotación determinan que la alimentación semanal de cada animal debe contener la siguiente composición:

harinas animales harinas vegetales harinas de pescado 9K 6K 11K

¿Cuántos sacos de cada marca debemos mezclar para alcanzar esa composición óptima teniendo en cuenta que además, por diferentes cuestions, deseamos que el número de sacos del pienso 4 sea igual a 1.

- 1) Pienso 1=?, Pienso 2=?, Pienso 3=2, Pienso 4=?
- 2) Pienso 1=2, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 3) Pienso 1=0, Pienso 2=?, Pienso 3=?, Pienso 4=?
- 4) Pienso 1=?, Pienso 2=?, Pienso 3=?, Pienso 4=0
- 5) Pienso 1=1, Pienso 2=?, Pienso 3=?, Pienso 4=?